PanNet: A deep network architecture for pan-sharpening(ICCV 2017)


文章目录

  • Abstract
  • Introduction
    • 过去方法存在的问题
    • 我们提出新的解决方法
    • Related work
  • PanNet: A deep network for pan-sharpening(PanNet:用于泛锐化的深度网络)
    • Background and motivation
    • PanNet architecture
      • Spectral preservation
      • Structural preservation
      • Network architecture
  • Experiments
  • Conclusion

論文鏈接
源代码

Abstract

我们针对泛锐化问题提出了一种深度网络架构,称为PanNet。我们结合特定领域的知识来设计我们的PanNet架构,重点关注泛锐化问题的两个目标:光谱和空间保存
为了保持光谱,我们将上采样的多光谱图像加入到网络输出中,直接将光谱信息传播到重建图像中
为了保持空间结构,我们在高通滤波域而不是图像域训练网络参数
我们表明,训练后的网络可以很好地泛化来自不同卫星的图像,而无需再训练。实验表明,在视觉上和标准质量度量方面,比最先进的方法有了显著的改进

Introduction

多光谱图像在农业、矿业和环境监测等领域有着广泛的应用。由于物理限制,卫星通常只能测量一张高分辨率全色(PAN)图像(即灰度)和几张低分辨率多光谱(LRMS)图像.泛锐化的目标是将这些光谱信息和空间信息融合在一起,得到与PAN相同尺寸的高分辨率多光谱(HRMS)图像

过去方法存在的问题

随着近年来深度神经网络在图像处理应用中的进展,研究人员已经开始探索这种泛锐化的途径,例如,一个深度泛锐化模型假设关系HR/LR多光谱图像斑块之间的差值与对应的HR/LR全色图像斑块之间的差值相同,并利用这一假设通过神经网络学习映射,最先进的泛锐化模型,基于卷积神经网络,称为PNN[21],采用了先前提出的图像超分辨率架构
这两种方法都把泛锐化问题看作一个简单的图像回归问题。也就是说,尽管他们能够获得良好的结果,但他们没有利用泛锐化的特定目标——光谱和空间保存——而是将泛锐化视为一个黑盒深度学习问题。然而,对于泛锐化,很明显,保留空间和光谱信息是融合的主要目标,因此深度学习方法应该明确地关注这些方面

我们提出新的解决方法

这激发了我们提出的称为“PanNet”的深度网络,它具有以下特征:

  1. 我们将泛锐化的问题特定知识纳入深度学习框架。具体来说,我们使用上采样的多光谱图像在网络中传播光谱信息,我们将此过程称为“光谱映射”。为了重点研究PAN图像中的主体结构,我们在高通域而不是图像域训练网络
  2. 我们的方法是一个端到端系统,它完全从数据中自动学习映射。与之前的(非深度)方法不同,卷积允许我们捕获MS图像和PAN图像不同波段的内部相关性
    实验表明,PanNet与几种标准方法以及其他深度模型相比,实现了最先进的性能
  3. 由于成像值的范围不一致,大多数传统方法需要针对不同的卫星进行参数调整。然而,在高通域的训练消除了这个因素,允许在一个卫星上的训练很好地推广到新的卫星,这不是在图像域上训练的其他深度方法的特征

Related work

简要介绍下过去的work
近几十年来出现了各种各样的pan锐化方法。其中,最流行的是基于分量替换,包括强度色调饱和度技术(IHS)[5],主成分分析(PCA)[20]和Brovey变换[14]。这些方法简单而快速,但它们往往以引入光谱失真为代价,成功地接近了PAN中包含的HRMS图像的空间分辨率
为了解决这个问题,已经提出了更复杂的技术,例如自适应方法(例如,PRACS[8])和频段相关方法(例如,BDSD[13])。在多分辨率方法[19,22]中,PAN图像和LRMS图像被分解,例如使用小波或拉普拉斯金字塔,然后融合
其他基于模型的方法将PAN、HRMS和LRMS图像之间关系的信念编码为正则化目标函数,然后将融合问题视为图像恢复优化问题[3,4,7,9,12,18]。其中许多算法都取得了很好的效果。我们在这些方法中选择最好的方法进行实验比较

PanNet: A deep network for pan-sharpening(PanNet:用于泛锐化的深度网络)


图2显示了我们提出的泛锐化深度学习方法(称为PanNet)的高级概要。我们首先回顾了泛锐化问题的常见方法,然后在泛锐化的两个目标背景下讨论了我们的方法,即重建包含pan空间内容的高分辨率多光谱图像和低分辨率图像的光谱内容

Background and motivation

我们将期望的HRMS图像集表示为X,并设Xb为第b个波段的图像。对于观测数据,P为PAN图像,M为LRMS图像,Mb为第b波段。大多数最先进的方法将融合视为最小化形式的目标

其中f1 (X,P)项强制结构一致性,f2 (X,M)强制光谱一致性,f3 (X)对X施加期望的图像约束。例如,第一个变分方法P+XS让

ω是一个b维概率权向量

其他方法使用空间差分算子G来关注高频内容
为了光谱的一致性,许多方法定义

↑M b表示上采样M b与X b大小相同,通过与平滑核k卷积进行平滑。f3 (X)通常是总变异惩罚

对于泛锐化问题,一个直接的深度学习方法可以利用一个简单的网络架构来学习输入(P,M)和输出X之间的非线性映射关系

其中,fw代表一个神经网络,W代表其参数

PNN[21]使用了这一思想,它直接将(P,M)输入到一个深度卷积神经网络中来近似x。尽管这种直接的架构给出了很好的结果,但它没有利用已知的图像特征来定义输入或网络结构

PanNet architecture

与PNN一样,我们也使用卷积神经网络(CNN),但我们的具体结构与PNN不同,使用最近提出的ResNet结构作为我们的神经网络
卷积滤波器对于这个问题特别有用,因为它们可以利用多光谱图像不同波段之间的高相关性,这在SIRF算法[7]中被证明是有用的。与其他泛锐化方法一样,我们的深度网络旨在同时保留光谱和空间信息
High-level idea用图3所示的潜在网络结构序列表示

我们考虑的三种泛锐化模型结构的例子:(从左到右)ResNet [15],ResNet+光谱映射,以及最终提出的网络,称为PanNet。ResNet已被证明可以提高CNN在图像处理任务上的性能,但在泛锐化框架中存在缺点。第二种网络实现了光谱保存的目标,而最后一种网络同时捕获了空间和光谱信息。我们对这三种方法都进行了试验,但没有一种应用于泛锐化

Spectral preservation

为了融合频谱信息,我们对M进行了上采样,并在该形式的深层网络中添加了一个跳跃连接
↑M表示上采样LRMS图像,f W表示ResNet,这一项的动机与式(3)中表示的目标相同
正如我们将看到的,它强制X共享m的频谱内容。与变分方法不同,我们不将X与平滑核进行卷积,而是允许深度网络纠正高分辨率的差异。在我们的实验中,我们将此模型称为“光谱映射”,并使用ResNet模型进行fw;对应图3中的中间网络

Structural preservation

我们将PAN图像和上采样LRMS图像的高通内容输入到深度网络W中,修改后的模型为
为了获得由函数G表示的高通信息,我们从原始图像中减去使用平均滤波器找到的低通内容
对于LRMS图像,我们在获得高通含量后将样本提升到PAN的大小
我们观察到,由于↑M是低分辨率的,它可以被看作包含了X的低通光谱含量,这是↑M - X项模型。这使得网络f W可以学习映射,将PAN中包含的高通spa信息融合到x中。我们将↑G(M)输入到网络中,以了解PAN中的空间信息如何映射到x中的不同光谱波段。这个目标对应于图3中的PanNet

在图4中,我们展示了图3中左右网络的初步比较。HRMS和LRMS图像有8个光谱带,我们用灰度表示为平均年龄。图4©显示了(a)的ResNet重建的平均绝对误差(MAE)图像,而(d)显示了提出的PanNet的平均绝对误差(MAE)图像。很明显,光谱映射可以更好地模拟光谱内容(在较暗的光滑区域中很明显),而在高通域上训练网络可以保留边缘和细节,这些结论得到了我们大量定量实验的支持
正如引言中提到的,在高通域训练深度网络的另一个优点是消除PAN和HRMS图像在不同卫星上产生的不一致性

Network architecture

在保留光谱信息的同时恢复空间信息的目标激发了式(6)中提出的目标。此外,之前的变分方法试图通过使用先验图像假设[3,7]来提高性能,对应于式(1)中的f3。在这里,我们利用深度学习直接学习一个函数,该函数捕获了PAN和LRMS输入之间的关系,以及HRMS输出
我们采用带有卷积神经网络的ResNet结构作为方程(6)中的网络模型fw,卷积运算有助于多光谱图像不同波段间的耦合建模。因此,我们的网络结构通过以下操作表示

其中,W表示权重,b表示网络偏差,l = 1,…, L−2/2, Y l表示第l层的输出

因此,网络建模的是不包含在↑ M中的高频边缘信息。近似的惩罚是如式(6)所示的Frobenius范数

虽然我们架构的参数层遵循ResNet,但两者在光谱映射过程(底部方程)和网络的高通输入(顶部方程)方面是不同的。在我们的实验中,我们将这种PanNet框架与直接应用于图像域的ResNet进行了比较,以显示合并这种额外领域知识的明显优势。(我们再次回顾,这两种方法都没有应用于泛锐化问题。)我们还比较了最先进的PNN,它使用了与ResNet不同的深度CNN学习方法

Experiments

我们利用Worldview3卫星的数据进行了几次实验。该卫星的PAN分辨率为0.41m ~ 1.5m。我们使用随机梯度下降(SGD)来最小化方程(6)中的目标函数。在我们的实验中,我们提取了18,000个大小为64 × 64的PAN/LRMS/HRMS补丁对。我们将其分成90/10%用于训练/验证。我们比较了六种广泛使用的泛锐化方法:PRACS[8]、In- dusion[19]、PHLP[18]、BDSD[13]、SIRF[6,7]和PNN[21]。每个参数都使用了几个参数设置,并选择了最佳性能





Conclusion

我们提出了PanNet,这是一个基于泛锐化的两个目标:光谱和空间保存的深度模型
对于光谱保存,我们引入了一种称为“光谱映射”的技术,将上采样的LRMS图像添加到目标函数中,允许网络只关注图像中的细节
为了空间保存,我们在PAN和上采样LRMS图像的高通分量上训练网络参数
我们使用ResNet作为一个非常适合这项任务的深度模型,与目前最先进的方法(包括PNN和vanilla ResNet)相比,Pan-Net实现了更好的图像重建,并更好地推广到新卫星

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/139542.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在任何机器人上实施 ROS 导航堆栈的指南

文章目录 路径规划参考 路径规划 路径规划是导航的最终目标。这允许用户向机器人给出目标姿势,并让它在给定的环境中自主地从当前位置导航到目标位置。这是我们迄今为止所做的一切(地图绘制和本地化)的汇集点。ROS 导航堆栈已经为我们完成了…

【Delphi】 各个平台使用 ntfy 效果说明

目录 一、Delphi 中使用 ntfy 库下载地址 二、各个平台使用效果说明 1. android 平台 2. ios 平台 3. windows 平台 三、总结 一、Delphi 中使用 ntfy 库下载地址 官方的文档地址:ntfyDelphi 接口库地址:GitHub - hazzelnuts/ntfy-for-delphi at …

智能AI系统ChatGPT系统源码+支持GPT4.0+支持ai绘画(Midjourney)/支持OpenAI GPT全模型+国内AI全模型

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如…

BGP基本配置实验

目录 一、实验拓扑 二、实验需求 三、实验步骤 1、IP地址配置 2、内部OSPF互通,配置OSPF协议 3、BGP建立邻居关系 4、R1和R5上把业务网段宣告进BGP 5、消除路由黑洞,在R2、R4上做路由引入 6、业务网段互通 一、实验拓扑 二、实验需求 1、按照图…

JVM源码剖析之软、弱、虚引用的处理细节

目录 写在前面: 源码剖析: Java层面: JVM层面: 使用危险点: 总结: 版本信息: jdk版本:jdk8u40 垃圾回收器:Serial new/old 写在前面: 不同的垃圾回收…

不同性别人群的股骨颈骨密度随年龄的变化趋势

增龄是发生骨质疏松的危险因素。因此,中老年人需要积极防范骨质疏松,以免发生骨折等不良事件。 为了探究不同性别人群的股骨颈骨密度随年龄的变化趋势,首先创建一个df,变量有id(编号)、age(年龄…

【算法】算法题-20231110

一、力口:506. 相对名次 简单 给你一个长度为 n 的整数数组 score ,其中 score[i] 是第 i 位运动员在比赛中的得分。所有得分都 互不相同 。 运动员将根据得分 决定名次 ,其中名次第 1 的运动员得分最高,名次第 2 的运动员得分第…

Git之分支与版本->课程目标及知识点的应用场景,分支的场景应用,标签的场景应用

1.课程目标及知识点的应用场景 Git分支和标签的命名规范 分支 dev/test/pre/pro(即master) dev:开发环境--windows (自己的电脑) test:测试环境--windows/linux (公司专门的测试电脑 pre:灰度环境(非常大的公司非常重要的项目) pro:正式环境 灰度环境与正式环境的服务器配置…

logback异步日志打印阻塞工作线程

前言 最新做项目,发现一些历史遗留问题,典型的是日志打印的配置问题,其实都是些简单问题,但是往往简单问题引起严重的事故,比如日志打印阻塞工作线程,以logback和log4j2为例。logback实际上是springboot的…

【Python】AppUI自动化—appium自动化开发环境部署、APP测试案例(17)上

文章目录 一.appium简介1.什么是appium2.appium 的工作原理3.APP类型4.APP页面布局 二,appium开发环境部署(python环境)1.下载安装环境1.1.下载安装所需环境1.2.Appium-desktop( Appium-Server-GUI )配置1.3.Appium-Inspector 配置…

计算机msvcp140.dll重新安装的四个解决方法,专门解决dll文件丢失问题的方法

在我多年的电脑使用经历中,曾经遇到过一个非常棘手的问题,那就是电脑提示找不到msvcp140.dll文件。这个问题让我苦恼了很久,但最终还是找到了解决方法。今天,我就来分享一下我解决这个问题的四种方法,希望对大家有所帮…

python爬虫怎么翻页

爬虫程序的代码实现如下&#xff1a; #include <iostream> #include <string> #include <curl/curl.h>int main() {CURL *curl;CURLcode res;std::string readBuffer;curl_global_init(CURL_GLOBAL_DEFAULT);curl curl_easy_init();if(curl) {curl_easy_se…

AI 绘画 | Stable Diffusion精确控制ControlNet扩展插件

ControlNet ControlNet是一个用于控制AI图像生成的插件&#xff0c;通过使用Conditional Generative Adversarial Networks&#xff08;条件生成对抗网络&#xff09;的技术来生成图像。它允许用户对生成的图像进行更精细的控制&#xff0c;从而在许多应用场景中非常有用&#…

每次重启完IDEA,application.properties文件里的中文变成?

出现这种情况&#xff0c;在IDEA打开Settings-->Editor-->File Encodings 然后&#xff0c;你需要将问号改为你需要的汉字。 重启IDEA&#xff0c;再次查看你的.properties文件就会发现再没有变成问号了

order by的注入与Insert ,update和delete注入

order by的注入 Insert &#xff0c;update和delete注入

大二第四周总结——用原生js封装一个分页器

用原生js封装一个分页器 起因&#xff1a;这次项目还是用原生的js来写的&#xff0c;我负责的是后台&#xff0c;分页是后台最常见的一个功能了&#xff0c;于是干脆封装一下,废话少说&#xff0c;直接上代码 这里是基本的样式 .pagination {display: flex;width: 600px;hei…

PCB知识补充

系列文章目录 文章目录 系列文章目录参考文献PCB知识互连线电阻过孔/铜箔电流能力铜箔载流能力过孔载流能力 热设计电磁兼容及部分要求 参考文献 [1]牛森,张敏娟,银子燕.高速PCB多板互联的电源完整性分析[J].单片机与嵌入式系统应用,2023,23(09). [2]陈之秀,刘洋,张涵舒等.高…

Django中简单的增删改查

用户列表展示 建立列表 views.py def userlist(request):return render(request,userlist.html) urls.py urlpatterns [path(admin/, admin.site.urls),path(userlist/, views.userlist), ]templates----userlist.html <!DOCTYPE html> <html lang"en">…

【Java】反射

1.什么是反射机制? Java 反射机制是在运行状态中&#xff0c;对于任意一个类&#xff0c;都能够知道这个类中的所有属性和方法&#xff0c;对于任意一个对象&#xff0c;都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为 Java 的反射机制…

《软件工程与计算》期末考试真题范例及答案

今天分享一套针对《软件工程与计算》这本书的真题案例&#xff0c;有关《软件工程与计算》23章内容的重点知识整理&#xff0c;已经总结在了博客专栏中&#xff0c;有需要的自行阅读&#xff1a; 《软件工程与计算》啃书总结https://blog.csdn.net/jsl123x/category_12468792.…