亚马逊云AI应用科技创新下的Amazon SageMaker使用教程

目录

Amazon SageMaker简介

Amazon SageMaker在控制台的使用

模型的各项参数

pytorch训练绘图部分代码


Amazon SageMaker简介

亚马逊SageMaker是一种完全托管的机器学习服务。借助 SageMaker,数据科学家和开发人员可以快速、轻松地构建和训练机器学习模型,然后直接将模型部署到生产就绪托管环境中。它提供了一个集成的 Jupyter 编写 Notebook 实例,供您轻松访问数据源以便进行探索和分析,因此您无需管理服务器。此外,它还可以提供常见的机器学习算法,这些算法经过了优化,可以在分布式环境中高效处理非常大的数据。借助对bring-your-own-algorithms和框架的本地支持,SageMaker提供灵活的分布式训练选项,可根据您的特定工作流程进行调整。可以从 SageMaker Studio 或 SageMaker 控制台中单击几下鼠标按钮以启动模型,以将该模型部署到安全且可扩展的环境中。

Amazon SageMaker在控制台的使用

  • 创建Amazon SageMaker

在亚马逊云科技首页,我们登录账号之后在搜索栏输入Amazon SageMaker之后,我们点击第一个服务进入Amazon SageMaker服务选在控制面板。

  • 进入服务的控制面板之后我们选择我们的服务设备

我们这里选择笔记本实例,当然要是有其他需求的小伙伴可以自行选择其他,因为我们这里时笔记本所以我就选择的时笔记本实例。然后点击创建笔记本实例即可进行下一步。

  • 进入笔记本实例设置里面需要填入一下信息:

    1. 笔记本实例名称

    2. 笔记本实例类型

    3. Elastic Inference

    4. 平台标识符

    5. 生命周期配置

    6. 卷大小

    7. 最低IMDS版本等

  • 设置好之后进入创建IAM角色控制面板,完成创建角色。

  • 创建完成之后返回笔记本实例控制面板,完成笔记本实例的创建。

  • 下载好代码(ipynb)文件之后,我们在笔记本实例页面点击“打开Jupyter”,然后上传代码。选择好文件后,点击蓝色的“Upload”按键,即可完成上传。然后我们打开刚刚上传的notebook,可以看到该文件就是一个完整的Stable Diffusion训练代码,这里我们的run kernel选择conda_pytorch_38或conda_pytorch_39,因为机器学习代码是用pytorch写的。

模型的各项参数

  • prompt (str or List[str]): 引导图像生成的文本提示或文本列表

  • height (int, optional, 默认为 V1模型可支持到512像素,V2模型可支持到768像素): 生成图像的高度(以像素为单位)

  • width (int, optional, 默认为 V1模型可支持到512像素,V2模型可支持到768像素): 生成图像的宽度(以像素为单位)

  • num_inference_steps (int, optional, defaults to 50): 降噪步数。更多的去噪步骤通常会以较慢的推理为代价获得更高质量的图像

  • guidance_scale (float, optional, defaults to 7.5): 较高的指导比例会导致图像与提示密切相关,但会牺牲图像质量。 如果指定,它必须是一个浮点数。 guidance_scale<=1 被忽略。

  • negative_prompt (str or List[str], optional): 不引导图像生成的文本或文本列表。不使用时忽略,必须与prompt类型一致(不应小于等于1.0)

  • num_images_per_prompt (int, optional, defaults to 1): 每个提示生成的图像数量

pytorch训练绘图部分代码

# move Model to the GPU
torch.cuda.empty_cache()
pipe = pipe.to("cuda")
​
# V1 Max-H:512,Max-W:512
# V2 Max-H:768,Max-W:768
​
print(datetime.datetime.now())
# 提示词,一句话或者多句话
prompts =["Dream far away","A singer who is singing",
]
generated_images = pipe(prompt=prompts,height=512, # 生成图像的高度width=512, # 生成图像的宽度num_images_per_prompt=1 # 每个提示词生成多少个图像
).images  # image here is in [PIL format](https://pillow.readthedocs.io/en/stable/)
​
print(f"Prompts: {prompts}\n")
print(datetime.datetime.now())
​
for image in generated_images:display(image)

在这里,我们设置了两个提示词:

  • Dream far away:梦想远方

  • A singer who is singing:一个正在唱歌的歌手

生成结构如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/139342.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ARM寄存器及功能介绍/R0-R15寄存器

1、ARM 寄存器组介绍 ARM 处理器一般共有 37 个寄存器&#xff0c;其中包括&#xff1a; &#xff08;1&#xff09; 31 个通用寄存器&#xff0c;包括 PC&#xff08;程序计数器&#xff09;在内&#xff0c;都是 32 位的寄存器。 &#xff08;2&#xff09; 6 个状态寄存器…

服务号如何升级订阅号

服务号和订阅号有什么区别&#xff1f;服务号转为订阅号有哪些作用&#xff1f;首先我们要知道服务号和订阅号有什么区别。服务号侧重于对用户进行服务&#xff0c;每月可推送4次&#xff0c;每次最多8篇文章&#xff0c;发送的消息直接显示在好友列表中。订阅号更侧重于信息传…

通信信道:无线信道中衰落的类型和分类

通信信道&#xff1a;无线信道中衰落的类型和分类 在进行通信系统仿真时&#xff0c;简单的情况下选择AWGN信道&#xff0c;但是AWGN信道和真是通信中的信道相差甚远&#xff0c;所以需要仿真各种其他类型的信道&#xff0c;为了更清楚理解仿真信道的特点&#xff0c;首先回顾…

linux安装并配置git连接github

git安装 sudo apt-get install git git信息配置 git config --global uer.name "yourname" git config --global user.email "youremail" 其中&#xff0c;yourname是你在github上配置的用户名&#xff0c;youremail是你在github上设置的邮箱 查看git…

Apinto 网关进阶教程,使用 API Mock 生成模拟数据

什么是 API Mock &#xff1f; API Mock 是一种技术&#xff0c;它允许程序员在不依赖后端数据的情况下&#xff0c;模拟 web服务器端 API 的响应。通常使用 API Mock 来测试前端应用程序&#xff0c;而无需等待后端程序构建完成。API Mock 可以模拟任何 HTTP 请求方法&#x…

谷歌提出 AGI 完整路线图:目前 ChatGPT 只处于 AGI 的第一阶段

本心、输入输出、结果 文章目录 谷歌提出 AGI 完整路线图:目前 ChatGPT 只处于 AGI 的第一阶段前言谷歌 DeepMind 发布 AGI 分级框架发展 AGI 必须遵循6个基本原则什么是AGI图灵测试详解六大原则AGI 的五大发展过程阶段原文参考弘扬爱国精神谷歌提出 AGI 完整路线图:目前 Cha…

LeetCode(7)买卖股票的最佳时机【数组/字符串】【简单】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; 121. 买卖股票的最佳时机 1.题目 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票…

基于Python+Django的图书管理系统

项目介绍 图书是人类文明传播的一个重要方式&#xff0c;很多历史悠久的文明都是通过图书来进行传递的&#xff0c;虽然随着时代的进步电子信息技术发展很快&#xff0c;但是纸质图书的地位仍然是非常稳固的&#xff0c;为了能够让知识拥有更加快捷方便的传递方式我们开发了本…

CSS注入的四种实现方式

目录 CSS注入窃取标签属性数据 简单的一个实验&#xff1a; 解决hidden 方法1&#xff1a;jsnode.js实现 侧信道攻击 方法2&#xff1a;对比波兰研究院的方案 使用兄弟选择器 方法3&#xff1a;jswebsocket实现CSS注入 实验实现&#xff1a; 方法4&#xff1a;window…

centos7下安装主从仲裁三台结构的MongoDB 7.0.4

安装手册英文版在这里 https://www.mongodb.com/docs/v7.0/tutorial/install-mongodb-on-red-hat/ 我的安装过程 1&#xff09;基础安装 1、创建 /etc/yum.repos.d/mongodb-org-7.0.repo文件 下面的代码复制到这个文件中&#xff0c;保存 [mongodb-org-7.0] nameMongoDB Re…

大模型+人形机器人,用AI唤起钢筋铁骨

《经济参考报》11月8日刊发文章《多方布局人形机器人赛道,智能应用前景广》。文章称&#xff0c;工信部日前印发的《人形机器人创新发展指导意见》&#xff0c;按照谋划三年、展望五年的时间安排&#xff0c;对人形机器人创新发展作了战略部署。 从开发基于人工智能大模型的人…

【CASS精品教程】cass3d 11.0加载超大影像、三维模型、点云数据

CAD2016+CASS11.0(内置3d)下载与安装: 【CASS精品教程】CAD2016+CASS11.0安装教程(附CASS11.0安装包下载)https://geostorm.blog.csdn.net/article/details/132392530 一、cass11.0 3d支持的数据 cass11.0中的3d模块增加了多种数据的支持,主要有: 1. 三维模型 点击…

CSS实现透明度效果的两种方法—— opacity 和 rgba()

在实际开发过程中&#xff0c;为了给用户呈现一些效果&#xff0c;我们需要控制元素的透明度。CSS 提供了 opacity 属性和 rgba() 函数给我们控制透明度&#xff0c;接下来通过一个例子来感受一下两种方法的区别。 <style>.transparentBox {display: inline-block;width…

AI驱动的软件测试,何时可以信赖?

综合编译&#xff5c;TesterHome社区 作者&#xff5c;Yuliya Vasilko&#xff0c;数据工程师 以下为作者观点&#xff1a; 越来越多的组织转向人工智能&#xff08;AI&#xff09;驱动的测试解决方案&#xff0c;以简化质量保证流程并提高软件可靠性。 随着对人工智能的依赖程…

功能案例 -- 拖拽上传文件,生成缩略图

直接看效果 实现代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>拖拽上传文件</title>&l…

低价寄快递寄件微信小程序 实际商用版,对接了低价快递渠道,运营平台赚取差价,支持市面上全部主流快递

盈利模式 快递代下CPS就是用户通过线上的渠道&#xff08;快递小程序&#xff09;&#xff0c;线上下单寄快递来赚取差价&#xff0c;例如你的成本价是5元&#xff0c;你在后台比例设置里面设置 首重利润是1元&#xff0c;续重0.5元&#xff0c;用户下1kg的单页面显示的就是6元…

ElasticSearch知识点

什么是ElasticSearch ElasticSearch: 智能搜索&#xff0c;分布式的搜索引擎&#xff0c;是ELK的一个非常完善的产品&#xff0c;ELK代表的是: E就是ElasticSearch&#xff0c;L就是Logstach&#xff0c;K就是kibana Elasticsearch是一个建立在全文搜索引擎 Apache Lucene基础…

FreeRTOS源码阅读笔记2--list.c

list.c中主要完成列表数据结构的操作&#xff0c;有列表和列表项的初始化、列表的插入和移除。 2.1列表初始化vListInitialise() 2.1.1函数原型 void vListInitialise( List_t * const pxList ) pxList&#xff1a;列表指针&#xff0c;指向要初始化的列表。 2.1.2函数框架…

联系作者方式的教程

首先你应该目前是在付费资源运行效果的展示文章页面&#xff0c;如下所示 然后一直往下滑&#xff0c;滑到这个文章的最下面&#xff0c;就可以看到我的推广名片&#xff0c;最后点击这个名片就可以获取到我的联系方式了~

学习OpenCV(蝴蝶书/C++)相关——2.MacOS下使用LLDB调试cpp程序

文章目录 1. VScode中的调试2. 配置VSCode中C++的调试(以OpenCV为例)2.1 创建适用于C++的.launch文件2.2 常见参数说明2.3 调试OpenCV的.launch文件示例2.3.1 .launch文件demo2.3.2 Debug模式的可执行文件3. 联合task.json文件一起使用3.1 创建tasks.json和launch.json文件3.2 …