OpenCV-Python小应用(九):通过灰度直方图检测图像异常点

OpenCV-Python小应用(九):通过灰度直方图检测图像异常点

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • 通过灰度直方图检测图像异常点
    • 代码实现
    • 输出结果
  • 参考

在这里插入图片描述
在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
  • OpenCV用C++语言编写,它具有C++、Python、Java和MATLAB接口,并支持Windows、Linux、Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令。
  • 图像的灰度值是指图像中每个像素的亮度值,通常用于黑白图像。灰度值的范围通常是0到255,其中0表示黑色,255表示白色。在计算机视觉中,灰度图像是由纯黑和纯白来过渡得到的,在黑色中加入白色就得到灰色,纯黑和纯白按不同的比例来混合就得到不同的灰度值。
  • 在灰度图像中,每个像素的颜色值都是灰度值,指黑白图像中点的颜色深度,范围一般从0到255,白色为255,黑色为0。在灰度图像中,每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。
  • 灰度直方图是一种用来描述数字图像中灰度级分布的图形工具。它是一个灰度级的函数,表示图像中具有某种灰度级的像素的个数,反映了图像中每种灰度出现的频率。
  • 灰度直方图是图像处理中非常重要的一个概念,它是我们对图像本身灰度的一个分析以及之后我们需要做二值化的一个基础的概念
  • 灰度直方图可以用来分析图像的对比度、亮度等特征,也可以用于图像增强、图像分割、图像压缩等领域。
  • 图像灰度直方图相关知识点,可查阅OpenCV-Python快速入门(九):直方图

实验环境

  • Python 3.6.13 (面向对象的高级语言)
  • OpenCV 3.4.10(python第三方库)pip3 install opencv-python==3.4.10.37

通过灰度直方图检测图像异常点

  • 基本思路:通过计算图像灰度,得到灰度直方图,这里认为灰度直方图中灰度值像素个数较少的灰度值大概率为异常点。
    在这里插入图片描述
  • 目录结构
    在这里插入图片描述

在这里插入图片描述

代码实现

import os
import cv2
import copy
import numpy as np
import matplotlib.pyplot as pltdef cal_low_high_hist(img):hist = cv2.calcHist([img],[0],None,[256],[0,255])flattened_hist = hist.flatten()  # [[255],[125],...] -> [255,125,...]# print(sum(flattened_hist)*0.125) # 下分位# print(sum(flattened_hist)*(1-0.125)) # 上分位# plt.plot(hist,color='b')# plt.show()# 下分位nums = 0for i in range(len(flattened_hist)):low_sum = sum(flattened_hist)*0.125nums += flattened_hist[i]if nums > low_sum:# print(i)break# 上分位nums = 0for j in range(len(flattened_hist)):low_sum = sum(flattened_hist)*(1-0.125)nums += flattened_hist[j]if nums > low_sum:# print(j)breakreturn i,jif __name__=="__main__":# 上分位计算值up_cal_val = [15,255]# 下分位计算值low_cal_val = [-255,-15]img_dir = 'imgs'img_name_list = os.listdir(img_dir)output_folder = 'out_imgs'if not os.path.exists(output_folder):os.mkdir(output_folder)for img_name in  img_name_list:img_path = os.path.join(img_dir,img_name)img = cv2.imread(img_path,0)i,j = cal_low_high_hist(img) # 下,上# print(i,j)up_cal_res = list(map(lambda x: x + j, up_cal_val))low_cal_res = list(map(lambda x: x + i, low_cal_val))# print(up_cal_res,low_cal_res) up_cal_res = [x if x <= 255 else 255 for x in up_cal_res] # 亮点(异常点)low_cal_res = [x if x >= 0 else 0 for x in low_cal_res] # 暗点(异常点)# print(up_cal_res,low_cal_res) #找到满足条件的像素点condition = np.logical_or(img>min(up_cal_res),img<max(low_cal_res))out_of_range_pixels = np.count_nonzero(condition)# print(out_of_range_pixels)# total_out_of_range_pixels += out_of_range_pixelssmall_image = copy.deepcopy(img)if out_of_range_pixels>4:contours,_ = cv2.findContours(condition.astype(np.uint8),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)valid_rectangles=[]for i,c in enumerate(contours):box=cv2.boundingRect(c)x,y,w,h, =boxcenter_x=x+w//2center_y=y+h//2# valid_rectangles.append((x,y,w,h,center_x,center_y))valid_rectangles.append([x,y,w,h,center_x,center_y])# cv2.drawContours(small_image,contours,i,(0,255.0),2)# cv2.rectangle(small_image,(x,y),(x+w,y+h),(0,0,255),2)pad = 5for i,(x,y,w,h,_,_) in enumerate(valid_rectangles):cv2.rectangle(small_image,(x-pad,y-pad),(x+w+pad,y+h+pad),(0,0,255),1)# 保存图片output_filename = f"{os.path.splitext(img_name)[0]}_res.jpg"output_path = os.path.join(output_folder,output_filename)cv2.imwrite(output_path,small_image)# 显示图片show_img = cv2.resize(small_image,(small_image.shape[1],small_image.shape[0]))cv2.imshow('{}'.format(output_filename),show_img)cv2.waitKey()cv2.destroyAllWindows()    

输出结果

在这里插入图片描述
在这里插入图片描述

参考

[1] https://opencv.org/
[2] 李立宗. OpenCV轻松入门:面向Python. 北京: 电子工业出版社,2019

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/138725.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot实现高校党务平台管理系统【项目源码】

基于springboot实现高校党务平台管理系统演示 Java技术 Java是由Sun公司推出的一门跨平台的面向对象的程序设计语言。因为Java 技术具有卓越的通用性、高效性、健壮的安全性和平台移植性的特点&#xff0c;而且Java是开源的&#xff0c;拥有全世界最大的开发者专业社群&#x…

ubuntu16.04 交叉编译 mbedtls

在为客户交叉编译项目时需要依赖 mbedtls&#xff0c; 客户的机器是 arm64 的 ubuntu 16.04&#xff0c; 交叉编译过程中遇到几个问题。 首先&#xff0c; mbedtls 需要依赖 python, 在 cmake 的过程中&#xff0c; 如果不是使用系统默认的 cmake 可能会导致&#xff0c;mbedt…

蓝桥杯算法双周赛心得——被替换的身份证(分类讨论)

大家好&#xff0c;我是晴天学长&#xff0c;分类讨论一定要细节啊&#xff0c;需要的小伙伴可以关注支持一下哦&#xff01;后续会继续更新的。&#x1f4aa;&#x1f4aa;&#x1f4aa; 1) .被替换的身份证 2) .算法思路 假设一方获胜 1.接受数据 2.假设潜梦醒 无非就是&am…

计算机组成原理之处理器(单周期)

引言 处理器的实现方式决定了时钟周期长度和CPI。实现方式有单周期与流水线&#xff0c;本篇谈谈单周期处理器。 目前CPU的频率一般是3GHZ/4GHZ&#xff0c;但是频率是有极限值的&#xff0c;受cycletime影响 基本的RISC-V实现 存储指令&#xff1a;ld,sd算术逻辑指令 &…

AI 绘画 | Stable Diffusion 进阶 Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)

前言 Stable Diffusion web ui&#xff0c;除了依靠文生图&#xff08;即靠提示词生成图片&#xff09;&#xff0c;图生图&#xff08;即靠图片提示词生成图片&#xff09;外&#xff0c;这两种方式还不能满足我们所有的绘图需求&#xff0c;于是就有了 Embeddings&#xff0…

京东数据分析:2023年Q3户外鞋服市场分析报告(冲锋衣行业销售数据分析)

从露营、骑行、徒步、桨板、垂钓、飞盘、滑雪到如今的city walk&#xff0c;近两年户外运动已经成为了年轻人新的生活方式。户外运动的爆发也刺激了人们对于鞋服在穿搭、场景化、专业性功能等方向的需求&#xff0c;户外鞋服市场迎来增长。 而全国性的降温则带给目前的户外鞋服…

json数据格式的理解(前+后)

什么是JSON&#xff1a; JSON&#xff08;JavaScript Object Notation&#xff09;是一种广泛使用的数据交换格式&#xff0c;它在前端和后端开发中都扮演着重要的角色。 JSON 的结构&#xff1a; JSON 数据由大括号 {} 包围&#xff0c;表示对象。 对象中的数据以键值对形式…

vue.cli 中怎样使用自定义的组件

目录 创建自定义组件 注册并使用自定义组件 全局注册自定义组件 使用 Props 传递数据 总结 前言 在Vue CLI中使用自定义组件是构建交互式和模块化Web应用的重要一环。Vue CLI为开发者提供了使用自定义组件的灵活性和简便性。通过Vue CLI&#xff0c;你可以创建、注册和使…

yo!这里是哈希应用相关介绍

目录 前言 位图 模拟实现 应用举例 布隆过滤器 模拟实现 应用举例 后记 前言 在介绍unordered系列容器时&#xff0c;我们知道其底层使用的是哈希表&#xff0c;其实哈希是一种方法&#xff0c;是一种思想&#xff0c;哈希思想&#xff08;Hashing&#xff09;是一种在…

【第2章 Node.js基础】2.4 Node.js 全局对象...持续更新

什么是Node.js 全局对象 对于浏览器引擎来说&#xff0c;JavaScript 脚本中的 window 是全局对象&#xff0c;而Node.js程序中的全局对象是 global&#xff0c;所有全局变量(除global本身外)都是global 对象的属性。全局变量和全局对象是所有模块都可以调用的。Node.is 的全局…

Vue3 源码解读系列(三)——组件渲染

组件渲染 vnode 本质是用来描述 DOM 的 JavaScript 对象&#xff0c;它在 Vue 中可以描述不同类型的节点&#xff0c;比如&#xff1a;普通元素节点、组件节点等。 vnode 的优点&#xff1a; 抽象&#xff1a;引入 vnode&#xff0c;可以把渲染过程抽象化&#xff0c;从而使得组…

Oracle迁移(RAC变单机模式)

1.升级内核 systemctl stop firewalld systemctl disable firewalldrpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm yum --enablerepo"elrepo-kernel" list --showduplic…

鸿蒙原生应用开发-DevEco Studio远程模拟器的使用

使用单设备模拟器运行应用/服务 Remote Emulator支持Phone、Wearable、Tablet、TV等设备类型&#xff0c;但不同区域&#xff08;开发者帐号注册地&#xff09;支持的设备类型可能不同&#xff0c;请以实际可申请的设备类型为准。 Remote Emulator中的单设备模拟器&#xff08…

图扑智慧农业:农林牧数据可视化监控平台

数字农业是一种现代农业方式&#xff0c;它将信息作为农业生产的重要元素&#xff0c;并利用现代信息技术进行农业生产过程的实时可视化、数字化设计和信息化管理。能将信息技术与农业生产的各个环节有机融合&#xff0c;对于改造传统农业和改变农业生产方式具有重要意义。 图…

语音识别与自然语言处理(NLP):技术前沿与未来趋势

语音识别与自然语言处理&#xff08;NLP&#xff09;&#xff1a;技术前沿与未来趋势 随着科技的快速发展&#xff0c;语音识别与自然语言处理&#xff08;NLP&#xff09;技术逐渐成为人工智能领域的研究热点。这两项技术的结合&#xff0c;使得机器能够更好地理解和处理人类语…

Leetcode Hot100之六:42.接雨水

题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 提示&#xff1a; n height.length 1 < n < 2 * 10^4 0 < height[i] < 10^5 思路 暴力循环&#xff1a; 原本的思路是左边界i从左到…

C语言--有3个候选人,每个选民只能投票选一人,要求编一个统计选票的程序,先后输入被选人的名字,最后输出各人得票结果。

一.解体思路 设一个结构体数组&#xff0c;数组中包含3个元素; 每个元素中的信息应包括候选人的姓名和得票数;输入被选人的姓名&#xff0c;然后与数组元素中的“姓名”成员比较&#xff0c;如果相同&#xff0c;就给这个元素中的“得票数”成 员的值加1;输出所有元素的信息。 …

[Linux打怪升级之路]-信号的保存和递达

前言 作者&#xff1a;小蜗牛向前冲 名言&#xff1a;我可以接受失败&#xff0c;但我不能接受放弃 如果觉的博主的文章还不错的话&#xff0c;还请点赞&#xff0c;收藏&#xff0c;关注&#x1f440;支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、信号的保…

设计模式是测试模式咩?

设计模式和测试模式概述 软件的生命周期为什么要进行测试&#xff08;测试的目的&#xff09;&#xff1f;软件的设计模式1. **瀑布模型**3. 增量和迭代模型4. 敏捷模型5. 喷泉模型 测试模型V模型W模型 一个应用程序从出生到“死亡”会经过非常漫长的流程…… 软件的生命周期 …

从windows iso文件中提取install.wim

1、首先从微软官方下载需要的windows镜像 https://www.microsoft.com/zh-cn/software-download/windows10/ 2、在下载的iso文件右键&#xff0c;打开压缩包&#xff0c;在sources文件夹下&#xff0c;应该就可以看到install.wim了。但似乎在最新的win10版本&#xff0c;微软采…