AI 绘画 | Stable Diffusion 进阶 Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)

前言

Stable Diffusion web ui,除了依靠文生图(即靠提示词生成图片),图生图(即靠图片+提示词生成图片)外,这两种方式还不能满足我们所有的绘图需求,于是就有了 Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)。

  • Embeddings模型 模型非常小,常常用于放在反向提示词里,让图像不出现生么,当然也可与用于正向提示词,生成我们想要的
  • LoRa模型 模型几十到几百MB,更多用于画特定人物,比如游戏/动漫的人物。平台上lora模型比较多。
  • Hypernetwork模型 大小和作用都和LoRa模型差不多,平台上Hypernetwork模型比较少。

在这里插入图片描述
你只需要在提示词词,使用Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)的标签。

Embeddings(词嵌入)

概念

Embeddings中文翻译为嵌入的,在Stable Diffusion中被称为词嵌入(嵌入式向量),这些向量可以捕捉文本中的语义信息,并在其中映射特定风格特征的信息。Embeddings一般保存的信息量相对较小,对人物的还原、对动作的指定、对画风的指定效果一般。除此之外,它还有另外一个名字Textual Inversion(文本反置、文本倒置)。它的模型被成为嵌入式模型、(反置/倒置)模型 。
Embeddings在Stable Diffusion模型中,又被称作嵌入式向量。它可以将文本编码器(TextEncoder)的输入(例如提示词)转换成电脑可以识别的文本向量,并在其中映射特定风格特征的信息。Embeddings模型和VAE模型一样后缀格式是.pt。大小仅为几kb到几十kb之间。Embeddings和checkpoint模型和lora模型比,它内部不包含图片信息,只是一些电脑可以识别图片的文本向量。举个比喻,如果把checkpoint模型比作一本大词典的话,Embeddings就是这本大词典中一些特定词的标签,它能精准的指向个别字词的含义,从而提共一个高效的索引。
比如我们像要画一个明星,但是checkpoint模型没有该明星名字对应的图片信息,这是我就可以用该明星的Embeddings模型生成这个明星的图片了,这里你可以Embeddings模型理解为包含这个明星的五官,面部、身体特征的嵌入式向量。使用Embeddings,Stable Diffusion就更容易理解我们画的明星长什么样子了!

使用

我们在模型下载网站上下载我们想要的Embeddings模型(国内liblib网站)。
在这里插入图片描述
然后放到SD WEB UI根目录下的embeddings文件夹内。,然后在SD WEB UI页面,点击刷新按钮,加载出来我们下载的Embeddings模型,然后点击Embeddings模型,会自动出现在提示词输入框。(默认会在正向提示词输入框内,但是当鼠标光标在反向提示词框内时,会出现在反向提示词框。)
在这里插入图片描述
这里的Embeddings模型也可以用提示词语法,圆括号和冒号来调整权重系数。
在这里插入图片描述

LoRa(低秩适应模型)

概念

Stable Diffusion Lora模型是一种通过低秩适应大型语言模型的方法。其核心思想是将原始的大型参数矩阵分解成两个或者多个低秩矩阵,并且只更新其中的一部分,从而减少计算量和存储需求,提高训练效率和模型性能。Lora的作用在于帮助你向AI传递描述某一个特征明确,主体清晰的形象。

使用

我们在模型下载网站(liblib.ai)上下载我们想要的lora模型。Lora模型需要放在 SD WEB UI根目录下的models\Lora文件夹内,大小一般为几十MB到几百MB。然后和嵌入式模型操作一样,先刷新在网页上加载出lora模型,然后点击lora到提示词输入框。
在这里插入图片描述
这里和嵌入式模型用法不同的是,lora模型需要加<>括号。格式 <lora:模型名:权重>,权重为1的时候,可以不写 <lora:模型名>,lora的权重建议设置在0.6左右,因为lora的权重越高,其他提示词的作用就越小,lora的权重过低,生成的图片又不像lora的训练的人物模样。当然lora的权重的最佳值,还跟你选择checkpoint模型有关,相同的lora搭配不同的checkpoint模型,生图的效果也有很大差别。经过我自己的大量测试,lora的权重建议设置在0.6左右,搭配大多数checkpoint模型都会有不错的效果。

在这里插入图片描述
值得注意的是有些lora模型需要搭配触发提示词,才能发挥lora的效果。

Hypernetwork(超网络)

概念

Stable Diffusion Hypernetwork是一种神经网络架构,它允许动态生成神经网络的参数(权重)。在Stable Diffusion中,Hypernetwork被用于动态生成分类器的参数,为Stable Diffusion模型添加了随机性,减少了参数量,并能够引入side information来辅助特定任务,这使得该模型具有更强的通用性和概括能力。

Hypernetwork的重要功能之一是对画面风格的转换,即切换不同的画风。它的特点在于能够生成多种画风的作品,同时能够保证画面的稳定性和清晰度。

使用

我们在模型下载网站(liblib.ai)上下载我们想要的lora模型。Hypernetwork模型需要放在 SD WEB UI根目录下的models\hypernetworks文件夹内,大小和lora模型差不多,一般为几十MB到几百MB。
在这里插入图片描述

hypernetworks模型的使用方法和lora模型一样,不同的是<lora:模型名>替换成了<hypernet:模型名>。格式 <hypernet:模型名:权重>
在这里插入图片描述
可以看出除了Embeddings模型的使用不需要<>尖括号外,hypernetworks模型和lora模型的使用都需要<>尖括号,说明hypernetworks模型和lora模型都是类似的,都是需要图片训练的,模型的中包含大量图片信息,而Embeddings模型只是简单的文本标记(向量)。

LoRA和Hypernetwork的区别

  • LoRA和Hypernetwork都是机器学习领域中比较前沿的技术,但是它们的作用有所不同。LoRA是一种图像风格转换模型,它可以将一张图片从一种风格转换成另一种风格,实现艺术风格迁移等功能。而Hypernetwork是一种模型生成技术,它的作用是学习从一个低维空间的潜在表示到一个高维空间的输出的映射函数。这种方法的主要目的是提供更加一般性和灵活性的模型生成能力,从而可以用更少的参数生成效果更好的模型。两种方法都有各自的优点和限制,需要根据具体任务的需求来选择相应的方法。

  • LoRA模型被广泛应用在图像处理领域,有很多应用场景,比如图像风格转换、艺术化渲染等等。同时,LoRA模型模型能够使用预训练权重,因此在实际应用中获取高质量的样本比较容易,并且由于LoRA的模型架构相对简单,因此训练比较容易实现。因此,很多人在图像处理领域中应用LoRA模型来处理图像,使得网上关于LoRA模型的文章和论文比较多。

  • 而Hypernetwork模型则相对较新,目前应用还较为局限。它的一个重要应用方向是用于神经网络架构搜索,可以快速搜索到高效的网络结构。但是,这种方法的难度比较大,需要大量的计算资源和专业知识以及较长的时间进行调试和优化。因此,Hypernetwork模型的文章和论文相对比较少,目前还没有被大规模应用到实际的项目中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/138717.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

京东数据分析:2023年Q3户外鞋服市场分析报告(冲锋衣行业销售数据分析)

从露营、骑行、徒步、桨板、垂钓、飞盘、滑雪到如今的city walk&#xff0c;近两年户外运动已经成为了年轻人新的生活方式。户外运动的爆发也刺激了人们对于鞋服在穿搭、场景化、专业性功能等方向的需求&#xff0c;户外鞋服市场迎来增长。 而全国性的降温则带给目前的户外鞋服…

json数据格式的理解(前+后)

什么是JSON&#xff1a; JSON&#xff08;JavaScript Object Notation&#xff09;是一种广泛使用的数据交换格式&#xff0c;它在前端和后端开发中都扮演着重要的角色。 JSON 的结构&#xff1a; JSON 数据由大括号 {} 包围&#xff0c;表示对象。 对象中的数据以键值对形式…

vue.cli 中怎样使用自定义的组件

目录 创建自定义组件 注册并使用自定义组件 全局注册自定义组件 使用 Props 传递数据 总结 前言 在Vue CLI中使用自定义组件是构建交互式和模块化Web应用的重要一环。Vue CLI为开发者提供了使用自定义组件的灵活性和简便性。通过Vue CLI&#xff0c;你可以创建、注册和使…

yo!这里是哈希应用相关介绍

目录 前言 位图 模拟实现 应用举例 布隆过滤器 模拟实现 应用举例 后记 前言 在介绍unordered系列容器时&#xff0c;我们知道其底层使用的是哈希表&#xff0c;其实哈希是一种方法&#xff0c;是一种思想&#xff0c;哈希思想&#xff08;Hashing&#xff09;是一种在…

【第2章 Node.js基础】2.4 Node.js 全局对象...持续更新

什么是Node.js 全局对象 对于浏览器引擎来说&#xff0c;JavaScript 脚本中的 window 是全局对象&#xff0c;而Node.js程序中的全局对象是 global&#xff0c;所有全局变量(除global本身外)都是global 对象的属性。全局变量和全局对象是所有模块都可以调用的。Node.is 的全局…

Vue3 源码解读系列(三)——组件渲染

组件渲染 vnode 本质是用来描述 DOM 的 JavaScript 对象&#xff0c;它在 Vue 中可以描述不同类型的节点&#xff0c;比如&#xff1a;普通元素节点、组件节点等。 vnode 的优点&#xff1a; 抽象&#xff1a;引入 vnode&#xff0c;可以把渲染过程抽象化&#xff0c;从而使得组…

Oracle迁移(RAC变单机模式)

1.升级内核 systemctl stop firewalld systemctl disable firewalldrpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm yum --enablerepo"elrepo-kernel" list --showduplic…

鸿蒙原生应用开发-DevEco Studio远程模拟器的使用

使用单设备模拟器运行应用/服务 Remote Emulator支持Phone、Wearable、Tablet、TV等设备类型&#xff0c;但不同区域&#xff08;开发者帐号注册地&#xff09;支持的设备类型可能不同&#xff0c;请以实际可申请的设备类型为准。 Remote Emulator中的单设备模拟器&#xff08…

图扑智慧农业:农林牧数据可视化监控平台

数字农业是一种现代农业方式&#xff0c;它将信息作为农业生产的重要元素&#xff0c;并利用现代信息技术进行农业生产过程的实时可视化、数字化设计和信息化管理。能将信息技术与农业生产的各个环节有机融合&#xff0c;对于改造传统农业和改变农业生产方式具有重要意义。 图…

语音识别与自然语言处理(NLP):技术前沿与未来趋势

语音识别与自然语言处理&#xff08;NLP&#xff09;&#xff1a;技术前沿与未来趋势 随着科技的快速发展&#xff0c;语音识别与自然语言处理&#xff08;NLP&#xff09;技术逐渐成为人工智能领域的研究热点。这两项技术的结合&#xff0c;使得机器能够更好地理解和处理人类语…

Leetcode Hot100之六:42.接雨水

题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 提示&#xff1a; n height.length 1 < n < 2 * 10^4 0 < height[i] < 10^5 思路 暴力循环&#xff1a; 原本的思路是左边界i从左到…

C语言--有3个候选人,每个选民只能投票选一人,要求编一个统计选票的程序,先后输入被选人的名字,最后输出各人得票结果。

一.解体思路 设一个结构体数组&#xff0c;数组中包含3个元素; 每个元素中的信息应包括候选人的姓名和得票数;输入被选人的姓名&#xff0c;然后与数组元素中的“姓名”成员比较&#xff0c;如果相同&#xff0c;就给这个元素中的“得票数”成 员的值加1;输出所有元素的信息。 …

[Linux打怪升级之路]-信号的保存和递达

前言 作者&#xff1a;小蜗牛向前冲 名言&#xff1a;我可以接受失败&#xff0c;但我不能接受放弃 如果觉的博主的文章还不错的话&#xff0c;还请点赞&#xff0c;收藏&#xff0c;关注&#x1f440;支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、信号的保…

设计模式是测试模式咩?

设计模式和测试模式概述 软件的生命周期为什么要进行测试&#xff08;测试的目的&#xff09;&#xff1f;软件的设计模式1. **瀑布模型**3. 增量和迭代模型4. 敏捷模型5. 喷泉模型 测试模型V模型W模型 一个应用程序从出生到“死亡”会经过非常漫长的流程…… 软件的生命周期 …

从windows iso文件中提取install.wim

1、首先从微软官方下载需要的windows镜像 https://www.microsoft.com/zh-cn/software-download/windows10/ 2、在下载的iso文件右键&#xff0c;打开压缩包&#xff0c;在sources文件夹下&#xff0c;应该就可以看到install.wim了。但似乎在最新的win10版本&#xff0c;微软采…

Vue3使用vue-print-nb插件打印功能

插件官网地址https://www.npmjs.com/package/vue-print-nb 效果展示: 打印效果 根据不同的Vue版本安装插件 //Vue2.0版本安装方法 npm install vue-print-nb --save pnpm install vue-print-nb --save yarn add vue-print-nb//Vue3.0版本安装方法&#xff1a; npm install vue3…

低代码平台,业务开发的“银弹”

目录 一、为什么需要低代码平台 二、低代码平台的搭建能力 三、低代码其他能力 四、写在最后 随着互联网和信息技术的快速发展&#xff0c;各行各业都在积极拥抱数字化转型。在这个过程中&#xff0c;软件开发成为企业实现数字化转型的关键环节。然而&#xff0c;传统的软件开发…

C语言 每日一题 PTA 11.8 day14

1.矩阵A乘以B 给定两个矩阵A和B&#xff0c;要求你计算它们的乘积矩阵AB。需要注意的是&#xff0c;只有规模匹配的矩阵才可以相乘。 即若A有Ra​行、Ca列&#xff0c;B有Rb行、Cb列&#xff0c;则只有Ca与Rb​相等时&#xff0c;两个矩阵才能相乘。 输入格式&#xff1a; 输入…

【Java】IntelliJ IDEA使用JDBC连接MySQL数据库并写入数据

目录 0 准备工作1 创建Java项目2 添加JDBC 驱动程序3 创建数据库连接配置文件4 创建一个 Java 类来连接和操作数据库5 运行应用程序 在 IntelliJ IDEA 中连接 MySQL 数据库并将数据存储在数据表中&#xff0c;使用 Java 和 JDBC&#xff08;Java Database Connectivity&#xf…

Android拖放startDragAndDrop拖拽Glide加载堆叠圆角图,Kotlin(5)

Android拖放startDragAndDrop拖拽Glide加载堆叠圆角图&#xff0c;Kotlin&#xff08;5&#xff09; import android.content.ClipData import android.graphics.Canvas import android.graphics.Point import android.os.Bundle import android.util.Log import android.view.…