数据分析实战 | K-means算法——蛋白质消费特征分析

目录

一、数据及分析对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型训练

​编辑 八、模型评价

九、模型调参与预测


一、数据及分析对象

txt文件——“protein.txt”,主要记录了25个国家的9个属性,主要属性如下:

(1)ID:国家的ID。

(2)Country(国家类别):该数据涉及25个欧洲国家肉类和其他食品之间的关系。

(3)关于肉类和其他食品的9个数据包括RedMeat(红肉)、WhiteMeat(白肉)、Eggs(蛋类)、Milk(牛奶)、Fish(鱼类)、Cereals(谷类)、Starch(淀粉类)、Nuts(坚果类)、Fr&Veg(水果和蔬菜)。

二、目的及分析任务

理解机器学习方法在数据分析中的应用——采用k-means方法进行聚类分析。

(1)将数据集导入后,在初始化阶段随机选择k个类簇进行聚类,确定初始聚类中心。

(2)以初始化后的分类模型为基础,通过计算每一簇的中心点重新确定聚类中心。

(3)迭代重复“计算距离——确定聚类中心——聚类”的过程。

(4)通过检验特定的指标来验证k-means模型聚类的正确性和合理性。

三、方法及工具

scikit-learn、pandas和matplotlib等Python工具包。

四、数据读入

import pandas as pd
protein=pd.read_table("D:\\Download\\JDK\\数据分析理论与实践by朝乐门_机械工业出版社\\第5章 聚类分析\\protein.txt",sep='\t')
protein.head()

五、数据理解

对数据框protein进行探索性分析,这里采用的实现方式为调用pandas包中数据框(DataFrame)的describe()方法。

protein.describe()

除了describe()方法,还可以调用shape属性和pandas_profiling包对数据框进行探索性分析。

protein.shape
(25, 10)

六、数据准备

在进行不同国家蛋白质消费结果分析时,要把对信息分析有用的数据提取出来,即关于肉类和其他食品的9列。具体实现方式为调用pandas包中数据框的drop()方法,删除列名“Country”的数据。

sprotein=protein.drop(['Country'],axis=1)
sprotein.head()

将待聚类数据提取后,需要对该数据集进行以均值为中心的标准化处理,在此采用的是统计学中的Z-Score标准化方法。

from sklearn import preprocessing
sprotein_scaled=preprocessing.scale(sprotein)
sprotein_scaled
array([[ 0.08294065, -1.79475017, -2.22458425, -1.1795703 , -1.22503282,0.9348045 , -2.29596509,  1.24796771, -1.37825141],[-0.28297397,  1.68644628,  1.24562107,  0.40046785, -0.6551106 ,-0.39505069, -0.42221774, -0.91079027,  0.09278868],[ 1.11969872,  0.38790475,  1.06297868,  0.05573225,  0.06479116,-0.5252463 ,  0.88940541, -0.49959828, -0.07694671],[-0.6183957 , -0.52383718, -1.22005113, -1.2657542 , -0.92507375,2.27395937, -1.98367386,  0.32278572,  0.03621022],[-0.03903089,  0.96810416, -0.12419682, -0.6624669 , -0.6851065 ,0.19082957,  0.45219769, -1.01358827, -0.07694671],[ 0.23540507,  0.8023329 ,  0.69769391,  1.13303099,  1.68457011,-0.96233157,  0.3272812 , -1.21918427, -0.98220215],[-0.43543839,  1.02336124,  0.69769391, -0.86356267,  0.33475432,-0.71124003,  1.38907137, -1.16778527, -0.30326057],[-0.10001666, -0.82775116, -0.21551801,  2.38269753,  0.45473794,-0.55314536,  0.51465594, -1.06498727, -1.5479868 ],[ 2.49187852,  0.55367601,  0.33240914,  0.34301192,  0.42474204,-0.385751  ,  0.3272812 , -0.34540128,  1.33751491],[ 0.11343353, -1.35269348, -0.12419682,  0.07009624,  0.48473385,0.87900638, -1.29663317,  2.4301447 ,  1.33751491],[-1.38071781,  1.24438959, -0.03287563, -1.06465843, -1.19503691,0.73021139, -0.17238476,  1.19656871,  0.03621022],[ 1.24167025,  0.58130455,  1.61090584,  1.24794286, -0.62511469,-0.76703815,  1.20169663, -0.75659327, -0.69930983],[-0.25248108, -0.77249407, -0.03287563, -0.49009911, -0.26516381,0.42332173, -1.35909141,  0.63117972,  1.45067184],[-0.10001666,  1.57593211,  0.60637272,  0.90320726, -0.53512697,-0.91583314, -0.04746827, -0.65379528, -0.24668211],[-0.13050955, -0.88300824, -0.21551801,  0.88884328,  1.62457829,-0.86003502,  0.20236471, -0.75659327, -0.81246676],[-0.89283166,  0.63656164, -0.21551801,  0.31428395, -0.38514744,0.35822393,  1.0143219 , -0.55099728,  1.39409338],[-1.10628185, -1.15929368, -1.67665709, -1.75412962,  2.97439408,-0.48804755,  1.0143219 ,  0.83677571,  2.12961342],[-1.10628185, -0.44095155, -1.31137232, -0.86356267, -0.98506557,1.61368162, -0.73450896,  1.14516971, -0.75588829],[-0.83184589, -1.24217931,  0.14976676, -1.22266225,  0.81468882,-0.28345445,  0.88940541,  1.45356371,  1.73356417],[ 0.02195488, -0.0265234 ,  0.51505153,  1.08993904,  0.96466835,-1.18552405, -0.35975949, -0.85939127, -1.20851601],[ 0.99772718,  0.60893309,  0.14976676,  0.96066319, -0.59511878,-0.61824316, -0.9218837 , -0.34540128,  0.43225947],[ 2.30892121, -0.60672281,  1.61090584,  0.50101573,  0.00479935,-0.73913909,  0.26482296,  0.16858872, -0.47299597],[-0.16100243, -0.91063679, -0.76344517, -0.07354359, -0.38514744,1.05570042,  1.32661312,  0.16858872, -0.69930983],[ 0.47934814,  1.27201813,  1.06297868,  0.24246404, -0.26516381,-1.26922123,  0.57711418, -0.80799227, -0.19010364],[-1.65515377, -0.80012261, -1.5853359 , -1.0933864 , -1.10504919,2.19956187, -0.79696721,  1.35076571, -0.52957443]])

七、模型训练

在使用k-means算法对其数据集进行聚类之前,我们在初始化阶段产生一个随机的k值作为类簇的个数。在scikit-learn框架中,使用“决定系数’作为性能评估的分数(score),该参数可以判断不同分类情况的统计模型对数据的拟合能力。这里采用的实现方式是调用sklearn.cluster模块的k-means.fit().score()方法。

#K值得选择
from sklearn.cluster import KMeans
NumberOfClusters=range(1,20)
kmeans=[KMeans(n_clusters=i) for i in NumberOfClusters]
score=[kmeans[i].fit(sprotein_scaled).score(sprotein_scaled) for i in range(len(kmeans))]
score
[-225.00000000000003,-139.5073704483181,-110.40242709032155,-93.99077697163418,-77.34315775475405,-64.22779496320605,-52.68794493054983,-46.148487504020046,-41.95277071693863,-35.72656669867341,-30.429164116494334,-26.430420929243024,-22.402609200395787,-19.80060035995764,-16.86466531666006,-13.979313757304398,-11.450822978023083,-8.61897844282252,-6.704106008601115]

上面的输出结果为每一个kmeans(n_clusters=i)(1<=i<=19)的预测值,为更直观地观察每个值的变化情况,可绘制一个ROC曲线。具体实现方式是调用matplotlib包的pyplot()方法。

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(NumberOfClusters,score)
plt.xlabel('Number of Clusters')
plt.ylabel('Score')
plt.title('Elbow Curve')
plt.show()

接着,随机设定聚类的数目为5,并以此为基础在数据矩阵上执行均值聚类,并查看模型预测结果,这里的具体实现方式是调用scikit-learn包的KMeans()方法和predict()方法,其中KMeans()方法需要设置的主要参数如下:

(1)algorithm使用默认值"auto",表示使用k-means中的elkan或full算法,由样本数据的稠密程度决定。

(2)n_clusters表示分类簇的数量。

(3)n_init表示运行该算法的尝试初始化次数。

(4)max_iter表示最大的迭代次数。

(5)verbose表示日志信息,这里使用默认“0”值,不输出日志信息。

myKMeans=KMeans(algorithm="auto",n_clusters=5,n_init=10,max_iter=200,verbose=0)
myKMeans.fit(sprotein_scaled)
y_kmeans=myKMeans.predict(sprotein)
print(y_kmeans)
[2 4 4 2 4 4 4 3 4 2 2 4 2 4 4 4 0 2 2 4 4 4 2 4 2]

通过以上分析,由确定的k=5,将数据集protein划分成5个类簇,类簇编号为0,1,2,3,4.接下来,显示每个样本所属的类簇编号。

protein["所隶属的类簇"]=y_kmeans
protein

 八、模型评价

可见,k-means算法可以完成相对应的聚类输出。接下来,引入轮廓系数对宣发聚类结果进行评价。这里采用的实现方式为调用Bio包Cluster模块的kcluster()方法,并调用silhouette_score()方法返回所有样本的轮廓系数,取值范围为[-1,1],轮廓系数值越大越好。

from sklearn.metrics import silhouette_score
silhouette_score(sprotein,y_kmeans)
0.2222236683250513
number=range(2,20)
myKMeans_list=[KMeans(algorithm="auto",n_clusters=i,n_init=10,max_iter=200,verbose=0) for i in number]
y_kmeans_list=[myKMeans_list[i].fit(sprotein_scaled).predict(sprotein_scaled) for i in range(len(number))]
score=[silhouette_score(sprotein,y_kmeans_list[i]) for i in range(len(number))]
score
[0.4049340501486218,0.31777138102456476,0.16996270462188423,0.21041645106099247,0.1943500298289292,0.16862742616667453,0.1868090290661263,0.08996856437394235,0.10531808817576255,0.13528249120860153,0.07381598489593617,0.09675173868153258,0.056460835203354785,0.10871862224667578,0.04670651599769748,0.03724019668260051,0.0074356180520073045,0.013165944671952217]
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.plot(number,score)
plt.xlabel("k值")
plt.ylabel("轮廓系数")

九、模型调参与预测

通过轮廓系数的分析,我们可以确定聚类中心的数量为2,并以此为基础在样本数据集protein上执行聚类。

estimator=KMeans(algorithm="auto",n_clusters=2,n_init=10,max_iter=200,verbose=0)
estimator.fit(sprotein_scaled)
y_pred=estimator.predict(sprotein_scaled)
print(y_pred)
[1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1]

 绘制聚类图:

x1=[]
y1=[]
x2=[]
y2=[]
for i in range(len(y_pred)):if y_pred[i]==0:x1.append(sprotein['RedMeat'][i])y1.append(sprotein['WhiteMeat'][i])if y_pred[i]==1:x2.append(sprotein['RedMeat'][i])y2.append(sprotein['WhiteMeat'][i])
plt.scatter(x1,y1,c="red")
plt.scatter(x2,y2,c="orange")
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/138610.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

11月份 四川汽车托运报价已经上线

中国人不骗中国人!! 国庆小长假的高峰期过后 放假综合症的你还没痊愈吧 今天给大家整理了9条最新线路 广州到四川的托运单价便宜到&#x1f4a5; 核算下来不过几毛钱&#x1f4b0; 相比起自驾的漫长和疲惫&#x1f697; 托运不得不说真的很省事 - 赠送保险 很多客户第一次运车 …

管理能力测评,如何提升管理能力?

管理能力是综合能力的体现&#xff0c;通常也解读为组织管理能力&#xff0c;如果要再细分的话&#xff0c;可能还包括有沟通能力&#xff0c;协调能力&#xff0c;组织能力&#xff0c;执行力和专业能力等等。不过没有办法说的太细节&#xff0c;因为每个部分铺开了都是一个独…

【ARM Trace32(劳特巴赫) 使用介绍 3 - trace32 访问运行时的内存】

请阅读【ARM Coresight SoC-400/SoC-600 专栏导读】 文章目录 1.1 trace32 访问运行时的内存1.1.1 侵入式 运行时内存访问1.1.2 非侵入式运行时访问1.1.3 缓存一致性的非侵入式运行时访问 1.2 Trace32 侵入式和非侵入式 运行时访问1.2.1 侵入式访问1.2.2 非侵入式运行时访问 1…

多级缓存之缓存同步

缓存数据同步的常见方式有三种&#xff1a; 设置有效期&#xff1a;给缓存设置有效期&#xff0c;到期后自动删除。再次查询时更新 优势&#xff1a;简单、方便缺点&#xff1a;时效性差&#xff0c;缓存过期之前可能不一致场景&#xff1a;更新频率较低&#xff0c;时效性要…

1994-2021年分行业二氧化碳排放量数据

1994-2021年分行业二氧化碳排放量数据 1、时间&#xff1a;1994-2021年 2、来源&#xff1a;原始数据整理自能源年鉴 3、指标&#xff1a;统计年度、行业代码、行业名称、煤炭二氧化碳排放量、焦炭二氧化碳排放量、原油二氧化碳排放量、汽油二氧化碳排放量、煤油二氧化碳排放…

智慧工地建筑施工项目管理平台源码,实现人员劳务实名制管理、区域安防监控、智能AI识别、用电/水监控、噪音扬尘监测、现场物料管理等功能

智慧工地管理系统源码&#xff0c;智慧工地云平台源码&#xff0c;PC端APP端源码 智慧工地管理平台实现对人员劳务实名制管理、施工进度、安全管理、设备管理、区域安防监控系统、智能AI识别系统、用电/水监控系统、噪音扬尘监测、现场物料管理系统等方面的实时监控和管理&…

Java学习 10.Java-数组习题

一、创建一个 int 类型的数组, 元素个数为 100, 并把每个元素依次设置为 1 - 100 代码实现 public static void main(String[] args) {int[] arrnew int[100];for (int i 0; i < arr.length; i) {arr[i]i1;}System.out.println(Arrays.toString(arr));} 运行结果 二、改变…

matplotlib从起点出发(11)_Tutorial_11_TightLayout

如何使用紧凑的而已来干净利落地将绘图放入图形中。 tight_layout会自动调整子图参数&#xff0c;使子图适合图区域。这是一项实验性功能&#xff0c;在某些情况下可能不起作用。它仅检查刻度标签、轴标签和标题的范围。 tight_layout的替代方法是constrained_layout。 1 简…

使用电脑时提示msvcp140.dll丢失的5个解决方法

“计算机中msvcp140.dll丢失的5个解决方法”。在我们日常使用电脑的过程中&#xff0c;有时会遇到一些错误提示&#xff0c;其中之一就是“msvcp140.dll丢失”。那么&#xff0c;什么是msvcp140.dll呢&#xff1f;它的作用是什么&#xff1f;丢失它会对电脑产生什么影响呢&…

pytorch基础语法问题

这里写目录标题 pytorch基础语法问题shapetorch.ones_like函数和torch.zeros_like函数y.backward(torch.ones_like(x), retain_graphTrue)torch.autograd.backward参数grad_tensors: z.backward(torch.ones_like(x))来个复杂例子z.backward(torch.Tensor([[1., 0]])更复杂例子实…

C# 查询腾讯云直播流是否存在的API实现

应用场景 在云考试中&#xff0c;为防止作弊行为的发生&#xff0c;会在考生端部署音视频监控系统&#xff0c;当然还有考官方监控墙系统。在实际应用中&#xff0c;考生一方至少包括两路直播流&#xff1a; &#xff08;1&#xff09;前置摄像头&#xff1a;答题的设备要求使…

Activiti6工作流引擎:Form表单

表单约等于流程变量。StartEvent 有一个Form属性&#xff0c;用于关联流程中涉及到的业务数据。 一&#xff1a;内置表单 每个节点都可以有不同的表单属性。 1.1 获取开始节点对应的表单 Autowired private FormService formService;Test void delopyProcess() {ProcessEngi…

笔记:AI量化策略开发流程-基于BigQuant平台(一)

从本文开始&#xff0c;按照AI策略开发的完整流程&#xff08;共七步&#xff09;&#xff0c;上手在BigQuant平台上快速构建AI策略。本文首先介绍如何使用证券代码模块指定股票范围和数据起止日期。重要的事情说三遍&#xff1a;模块的输入端口有提示需要连线的上游数据类型&a…

报错信息Update your application‘s configuration

在使用Maven项目时&#xff0c;有一个报错信息是&#xff1a;Update your applications configuration 这类问题&#xff0c;就是我们的application.yml文件 或者 application.properties文件 内容哪里写错了 我的问题是格式对齐方式出错&#xff0c;如下&#xff1a; 修改过后…

设计模式JAVA

1 创建型 如何合理的创建对象&#xff1f; 1.1 单例模式 字面意思就是只能创建一个对象实例时使用。 例如&#xff0c;Windows中只能打开一个任务管理器&#xff0c;这样可以避免因打开多个任务管理器窗口而造成内存资源的浪费&#xff0c;或出现各个窗口显示内容的不一致等…

为什么要学习去使用云服务器,外网 IP能干什么,MAC使用Termius连接阿里云服务器。保姆级教学

目录 引言 可能有人想问为什么要学习云服务器&#xff1f; &#xff08;获取Linux环境&#xff0c;获得外网IP) 二、安装教程 引言 可能有人想问为什么要学习云服务器&#xff1f; &#xff08;获取Linux环境&#xff0c;获得外网IP) 1.虚拟机&#xff08;下策&#xff09; …

Python零基础小白常遇到的问题总结

文章目录 一、注意你的Python版本1.print()函数2.raw_input()与input()3.比较符号&#xff0c;使用!替换<>4.repr函数5.exec()函数 二、新手常遇到的问题1、如何写多行程序&#xff1f;2、如何执行.py文件&#xff1f;3、and&#xff0c;or&#xff0c;not4、True和False…

LINUX入门篇【4】开发篇--开发工具vim的使用

前言&#xff1a; 从这一篇开始&#xff0c;我们将正式进入使用LINUX进行写程序和开发的阶段&#xff0c;可以说&#xff0c;由此开始&#xff0c;我们才开始真正去使用LINUX。 介绍工具&#xff1a; 1.LINUX软件包管理器yum&#xff1a; 1.yum的介绍&#xff1a; 在LINUX…

【教3妹学编程-算法题】2923. 找到冠军 I

3妹&#xff1a;2哥2哥&#xff0c;你看到新闻了吗&#xff1f;襄阳健桥医院院长 公然“贩卖出生证明”&#xff0c; 真是太胆大包天了吧。 2哥 : 我也看到新闻了&#xff0c;7人被采取刑事强制措施。 就应该好好查查他们&#xff0c; 一查到底&#xff01; 3妹&#xff1a;真的…

Oracle(18)Auditing

文章目录 一、基础知识1、审计介绍2、Auditing Types 审计类型3、Auditing Guidelines 审计准则4、Auditing Categories 审核类别5、Database Auditing 数据库审计6、Auditing User SYS 审计sys用户7、Getting Auditing Informatio 获取审计信息8、获取审计记录通知 二、基础操…