pytorch基础语法问题

这里写目录标题

  • pytorch基础语法问题
    • shape
    • torch.ones_like函数和torch.zeros_like函数
    • y.backward(torch.ones_like(x), retain_graph=True)
      • torch.autograd.backward
        • 参数grad_tensors: z.backward(torch.ones_like(x))
        • 来个复杂例子z.backward(torch.Tensor([[1., 0]])
        • 更复杂例子
        • 实际上,也可以通过 求均值 的形式将其转为标量
        • retain_graph=True参数
        • 在每次反向传播求导时,计算的梯度不会自动清零。如果进行多次迭代计算梯度而没有清零,那么梯度会在前一次的基础上叠加。需要使用 Tensor.grad.zero_()将梯度清零。x.grad.data.zero_()
        • 非叶子节点(见上一篇文章)的梯度会默认被释放掉,除非用 retain_grad()函数明确指明保留其梯度。
      • 一些援引
    • 矩阵相乘

pytorch基础语法问题

shape

import torch
# 创建一个形状为(2, 3)的张量
x = torch.Tensor([[1, 2, 3], [4, 5, 6],[1,1,1],[2,2,2]])
print(len(x.shape))
print(x.shape[0])
# 遍历张量中的元素
for i in range(x.shape[0]):for j in range(x.shape[1]):print(x[i, j])

len(x.shape),维数,一般为二维
x.shape[0]:行数
x.shape[1]: 列数

2
4
tensor(1.)
tensor(2.)
tensor(3.)
tensor(4.)
tensor(5.)
tensor(6.)
tensor(1.)
tensor(1.)
tensor(1.)
tensor(2.)
tensor(2.)
tensor(2.)进程已结束,退出代码0

torch.ones_like函数和torch.zeros_like函数

返回一个形状与input相同且值全为1的张量。torch.ones_like(input)相当于torch.ones(input.size, dtype=input.dtype,layout=input.layout,device=input.device)

input = torch.rand(4, 6)
print(input)
# 生成与input形状相同、元素全为1的张量
a = torch.ones_like(input)
print(a)
# 生成与input形状相同、元素全为0的张量
b = torch.zeros_like(input)
print(b)

在这里插入图片描述

z.backward(torch.ones_like(z))

z.backward(torch.ones_like(z))中的torch.ones_like(z)相当于在对z进
行求导时,对z中的元素进行了求和操作,从而将其转为一个标量。

y.backward(torch.ones_like(x), retain_graph=True)

y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))

torch.autograd.backward

x = torch.tensor(1.0, requires_grad=True)
y = torch.tensor(2.0, requires_grad=True)
z = x**2+y
z.backward()
print(z, x.grad, y.grad)>>> tensor(3., grad_fn=<AddBackward0>) tensor(2.) tensor(1.)

可以z是一个标量,当调用它的backward方法后会根据链式法则自动计算出叶子节点的梯度值。

但是 如果遇到z是一个向量或者是一个矩阵的情况,这个时候又该怎么计算梯度呢? 这种情况我们需要定义grad_tensor来计算矩阵的梯度。在介绍为什么使用之前我们先看一下源代码中backward的接口是如何定义的:

torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None)
  • tensor: 用于计算梯度的tensor。也就是说这两种方式是等价的:- torch.autograd.backward(z) == z.backward()
  • grad_tensors: 在计算矩阵的梯度时会用到。他其实也是一个tensor,shape一般需要和前面的tensor保持一致。
  • retain_graph: 通常在调用一次backward后,pytorch会自动把计算图销毁,所以要想对某个变量重复调用backward,则需要将该参数设置为True
  • create_graph: 当设置为True的时候可以用来计算更高阶的梯度
  • grad_variables: 这个官方说法是grad_variables’ is deprecated. Use - ‘grad_tensors’ instead.也就是说这个参数后面版本中应该会丢弃,直接使用grad_tensors就好了。

好了,参数大致作用都介绍了,下面我们看看pytorch为什么设计了grad_tensors这么一个参数,以及它有什么用呢?

参数grad_tensors: z.backward(torch.ones_like(x))

原则上,Pytorch不支持对张量的求导,即如果z是张量的话,需要先将其转为标量。

浏览了很多博客,给出的解决方案都是说在求导时,加一个torch.ones_like(z)的参数。

torch.ones_like(z)的作用。简而言之,torch.ones_like(z)相当于在对z进行求导时,对z中的元素进行求和操作,从而将其转为一个标量,便于后续的求导。

x = torch.ones(2,requires_grad=True)
z = x + 2
z.backward()>>> ...
RuntimeError: grad can be implicitly created only for scalar outputs

在这里插入图片描述

本质要得到 z对x求导, 但是已知的是X,Z ;一个矩阵对另一个矩阵求导,才能得到 每个z_partial 对x_partial的导数
其实,可以让sum(z_partial) 对于X求导,对xi 求偏导,就可以得到对应的z_partial
对x_partial的导数,,因为sum(z_partial) 对xi 求偏导,只有包含xi 的那一项在求导,其余与xi 无关的项
对xi求导为0

我们再仔细想想,对z求和不就是等价于z点乘一个一样维度的全为1的矩阵吗?即 [公式]
,而这个I也就是我们需要传入的grad_tensors参数。(点乘只是相对于一维向量而言的,对于矩阵或更高为的张量,可以看做是对每一个维度做点乘)

import torchx = torch.ones(2,3,requires_grad=True)
z = 2*x + 2
print(z)
print(z.sum())
# print(z.*torch.ones_like(x))
z.sum().backward()#或者z.backward(torch.ones_like(x)) 效果一样!
print(x.grad)'''
tensor([[4., 4., 4.],[4., 4., 4.]], grad_fn=<AddBackward0>)
tensor(24., grad_fn=<SumBackward0>)
tensor([[2., 2., 2.],[2., 2., 2.]])
'''
来个复杂例子z.backward(torch.Tensor([[1., 0]])
x = torch.tensor([2., 1.], requires_grad=True).view(1, 2)
y = torch.tensor([[1., 2.], [3., 4.]], requires_grad=True)z = torch.mm(x, y)
print(f"z:{z}")
z.backward(torch.Tensor([[1., 0]]), retain_graph=True)
print(f"x.grad: {x.grad}")
print(f"y.grad: {y.grad}")>>> z:tensor([[5., 8.]], grad_fn=<MmBackward>)
x.grad: tensor([[1., 3.]])
y.grad: tensor([[2., 0.],[1., 0.]])

在这里插入图片描述
说了这么多,grad_tensors的作用其实可以简单地理解成在求梯度时的权重,因为可能不同值的梯度对结果影响程度不同,所以pytorch弄了个这种接口,而没有固定为全是1。引用自知乎上的一个评论:如果从最后一个节点(总loss)来backward,这种实现(torch.sum(y*w))的意义就具体化为 multiple loss term with difference weights 这种需求了吧
内容来源

看到这里我不由得想,会不会有更复杂的例子呢,万一 输入参数太多多维,导致得到的z不只是一个一维向量,是多维的矩阵,那么就是sum起来或者是点乘一个和z尺寸相同的全1矩阵咯,反正,z是一定是要被处理成一个标量才能进行求导
原则上,Pytorch不支持对张量的求导,即如果z是张量的话,需要先将其转为标量。

更复杂例子
import torchx = torch.tensor(3.,requires_grad=True)
p = torch.ones(2,2,requires_grad=True)y = x*x
z = 2*y+2*p*p
# [
# [1,1],
# [1,1]
# ]
z.backward(torch.ones_like(z))
# # z = z.sum() # 与下面的torch.sum(z)作用相同,即z中所有元素的和。
# z = torch.sum(z)
# z.backward()
print(x.grad)
print(p.grad)
# print(y.grad) # backward()无法对非叶子节点求导# 知识点汇总:
# 原则上,Pytorch不支持对张量的求导,即如果z是张量的话,需要先将其转为标量。
# 就这个例子来说,z.backward(torch.ones_like(z))中的torch.ones_like(z)相当于在对z进行求导时,对z中的元素进行了求和操作,从而将其转为一个标量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

pp,张量相乘,对应位置的元素相乘,torch.mul()和 ,广播机制
z = 2y+2p*p,张量相加,广播机制,y这个标量被生生广播 扩维了,
当 z.sum().backward(),求和再对x求导,这个导数就大了不少(广播机制之后再求和,计算过程中标量y维数扩大了四倍,导致z对y的导数也扩大了四倍,夸大了,不合适

这么大,对x求导不太公正啊

实际上,也可以通过 求均值 的形式将其转为标量
z = z.mean() # z中所有元素的均值
z.backward()

在这里插入图片描述
该部分来自于此处

retain_graph=True参数

当我们计算梯度时,PyTorch会自动根据计算图反向传播梯度来更新模型参数。但是,当我们的计算图比较复杂,或者需要多次反向传播时,我们可能需要使用retain_graph参数来保存计算图。

retain_graph表示在进行反向传播计算梯度的时候,是否保留计算图。如果设置为True,则计算图将被保留,可以在之后的操作中进行多次反向传播计算。如果为False,则计算图将被清空。这是为了释放内存并防止不必要的计算。

pytorch进行一次backward之后,各个节点的值会清除,这样进行第二次backward会报错,因为虽然计算节点数值保存了,但是计算图结构被释放了,如果加上retain_graph==True后,可以再来一次backward。

import torch# 定义张量
x = torch.ones(2, 2, requires_grad=True)
y = x + 2
z = y * y * 3
out = z.mean()
print(x.grad)
# print(y) 全3矩阵
# print(z) #全27矩阵
# 计算梯度
out.backward(retain_graph=True)
print(x.grad)
# 再次计算梯度
z.backward(torch.ones_like(z))
print(x.grad)
None
tensor([[4.5000, 4.5000],[4.5000, 4.5000]])
tensor([[22.5000, 22.5000],[22.5000, 22.5000]])

在这里插入图片描述
在这里插入图片描述

z对x求导,在x为全1矩阵之处应该是18,但你会发现代码运行结果是22.5,很没有厘头,其实是因为 梯度累加
如何解决呢

x.grad.data.zero_()
在每次反向传播求导时,计算的梯度不会自动清零。如果进行多次迭代计算梯度而没有清零,那么梯度会在前一次的基础上叠加。需要使用 Tensor.grad.zero_()将梯度清零。x.grad.data.zero_()
import torch# 定义张量
x = torch.ones(2, 2, requires_grad=True)
y = x + 2
z = y * y * 3
out = z.mean()
print(x.grad)
# print(y) 全3矩阵
# print(z) #全27矩阵
# 计算梯度
out.backward(retain_graph=True)
print(x.grad)
x.grad.data.zero_()
# 再次计算梯度
z.backward(torch.ones_like(z))
print(x.grad)
None
tensor([[4.5000, 4.5000],[4.5000, 4.5000]])
tensor([[18., 18.],[18., 18.]])

再来个例子

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
# y=(x+w)*(w+1)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)# 反向传播求导数
# torch.autograd.backward(y)
y.backward(retain_graph=True)
print("w's grad: {}\\nx's grad: {}".format(w.grad, x.grad))
# print("a's grad: {}".format(a.grad))# 清零梯度
# w.grad.zero_()
# x.grad.zero_()# 第二次求导
y.backward()
print("w's grad: {}\\nx's grad: {}".format(w.grad, x.grad))

输出结果:

w's grad1: tensor([5.])
x's grad1: tensor([2.])
w's grad2: tensor([10.])
x's grad2: tensor([4.])

可以,如果注释掉 grad.zero() 相关的代码,那么第二次计算得到的导数就叠加到了第一次结果之上。

非叶子节点(见上一篇文章)的梯度会默认被释放掉,除非用 retain_grad()函数明确指明保留其梯度。
print("a's grad: {}".format(a.grad))

输出结果:

a’s grad: None
如这里如果我们输出非叶子节点 的梯度,显示为 None。

此段来自:backward()函数注意事项

一些援引

待看
pytorch中retain_graph==True的作用说明(详细例子+踩坑说明)

在这里插入图片描述
本来有个问题,啥叫释放,怎么释放,只要最后一次一次backward不设置retain_graph==True,就算释放
在这里插入图片描述
以上是这篇的意思
梯度会叠加,我看到有代码 在循环里面使用backward,也没用 retain_graph==True,计算树没被释放?还有,想必需要用到梯度叠加?

矩阵相乘

pytorch中的矩阵乘法操作(总结的好!简明精要
pytorch中的矩阵乘法操作:
torch.mm()
- 只适合于二维张量的矩阵乘法
- m x n, n x p -> m x p
torch.bmm()
- 只适合于三维张量的矩阵乘法,与torch.mm类似,但多了一个batch_size维度。
- b x m x n, b x n x p -> b x m x p

torch.mul()和*

  • ⭐ torch.mul()和*等价。
  • 张量对应位置元素相乘
  • 将输入张量input的每个元素与另一个向量or标量other相乘,返回一个新的张量out,两者维度需满足广播规则

torch.dot()
向量点积:两向量对应位置相乘然后全部相加。只能支持两个一维向量。
torch.mv(), @, torch.matmul()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/138596.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# 查询腾讯云直播流是否存在的API实现

应用场景 在云考试中&#xff0c;为防止作弊行为的发生&#xff0c;会在考生端部署音视频监控系统&#xff0c;当然还有考官方监控墙系统。在实际应用中&#xff0c;考生一方至少包括两路直播流&#xff1a; &#xff08;1&#xff09;前置摄像头&#xff1a;答题的设备要求使…

Activiti6工作流引擎:Form表单

表单约等于流程变量。StartEvent 有一个Form属性&#xff0c;用于关联流程中涉及到的业务数据。 一&#xff1a;内置表单 每个节点都可以有不同的表单属性。 1.1 获取开始节点对应的表单 Autowired private FormService formService;Test void delopyProcess() {ProcessEngi…

笔记:AI量化策略开发流程-基于BigQuant平台(一)

从本文开始&#xff0c;按照AI策略开发的完整流程&#xff08;共七步&#xff09;&#xff0c;上手在BigQuant平台上快速构建AI策略。本文首先介绍如何使用证券代码模块指定股票范围和数据起止日期。重要的事情说三遍&#xff1a;模块的输入端口有提示需要连线的上游数据类型&a…

报错信息Update your application‘s configuration

在使用Maven项目时&#xff0c;有一个报错信息是&#xff1a;Update your applications configuration 这类问题&#xff0c;就是我们的application.yml文件 或者 application.properties文件 内容哪里写错了 我的问题是格式对齐方式出错&#xff0c;如下&#xff1a; 修改过后…

设计模式JAVA

1 创建型 如何合理的创建对象&#xff1f; 1.1 单例模式 字面意思就是只能创建一个对象实例时使用。 例如&#xff0c;Windows中只能打开一个任务管理器&#xff0c;这样可以避免因打开多个任务管理器窗口而造成内存资源的浪费&#xff0c;或出现各个窗口显示内容的不一致等…

为什么要学习去使用云服务器,外网 IP能干什么,MAC使用Termius连接阿里云服务器。保姆级教学

目录 引言 可能有人想问为什么要学习云服务器&#xff1f; &#xff08;获取Linux环境&#xff0c;获得外网IP) 二、安装教程 引言 可能有人想问为什么要学习云服务器&#xff1f; &#xff08;获取Linux环境&#xff0c;获得外网IP) 1.虚拟机&#xff08;下策&#xff09; …

Python零基础小白常遇到的问题总结

文章目录 一、注意你的Python版本1.print()函数2.raw_input()与input()3.比较符号&#xff0c;使用!替换<>4.repr函数5.exec()函数 二、新手常遇到的问题1、如何写多行程序&#xff1f;2、如何执行.py文件&#xff1f;3、and&#xff0c;or&#xff0c;not4、True和False…

LINUX入门篇【4】开发篇--开发工具vim的使用

前言&#xff1a; 从这一篇开始&#xff0c;我们将正式进入使用LINUX进行写程序和开发的阶段&#xff0c;可以说&#xff0c;由此开始&#xff0c;我们才开始真正去使用LINUX。 介绍工具&#xff1a; 1.LINUX软件包管理器yum&#xff1a; 1.yum的介绍&#xff1a; 在LINUX…

【教3妹学编程-算法题】2923. 找到冠军 I

3妹&#xff1a;2哥2哥&#xff0c;你看到新闻了吗&#xff1f;襄阳健桥医院院长 公然“贩卖出生证明”&#xff0c; 真是太胆大包天了吧。 2哥 : 我也看到新闻了&#xff0c;7人被采取刑事强制措施。 就应该好好查查他们&#xff0c; 一查到底&#xff01; 3妹&#xff1a;真的…

Oracle(18)Auditing

文章目录 一、基础知识1、审计介绍2、Auditing Types 审计类型3、Auditing Guidelines 审计准则4、Auditing Categories 审核类别5、Database Auditing 数据库审计6、Auditing User SYS 审计sys用户7、Getting Auditing Informatio 获取审计信息8、获取审计记录通知 二、基础操…

赛氪助力全国大学生数学竞赛山东赛区圆满举办

近日&#xff0c;全国大学生数学竞赛山东赛区比赛有序进行&#xff0c;赛氪已连续6年助力本项赛事蓬勃发展。在中国高等教育学会高校竞赛评估与管理体系研究专家工作组发布的《2022全国普通高校大学生竞赛分析报告》中&#xff0c;本赛事荣登观察目录。 全国大学生数学竞赛旨在…

基于STC12C5A60S2系列1T 8051单片机串口通信信应用

基于STC12C5A60S2系列1T 8051单片机串口通信应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机串口通信介绍STC12C5A60S2系列1T 8051单片机串口通信的结构基于STC12C5A60S2系列1T 8051单片机串口通信的特殊功能寄存器列表基于STC12C5A60S2系列1T 8051单片…

高校教务系统登录页面JS分析——长沙理工大学教务系统

高校教务系统密码加密逻辑及JS逆向 本文将介绍高校教务系统的密码加密逻辑以及使用JavaScript进行逆向分析的过程。通过本文&#xff0c;你将了解到密码加密的基本概念、常用加密算法以及如何通过逆向分析来破解密码。 本文将是本专栏最后一篇文章&#xff0c;我看了绝大多数高…

【代码随想录】算法训练计划18

1、513. 找树左下角的值 题目&#xff1a; 给定一个二叉树的 根节点 root&#xff0c;请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 思路&#xff1a; 递归&#xff0c;规则&#xff0c;基本可以自己写出来 var maxDepth int var res int fun…

Spring Gateway基础知识总结

本文主要总结Spring Gateway的基础用法&#xff0c;内容包括网关、Spring Gateway工作流程、Spring Cloud Gateway搭建、路由配置方式、负载均衡实现、断言工厂这几个部分 目录 1. 网关 1.1 网关介绍 1.2 网关对比 1.3 Spring Gateway 1.4 核心概念 1.6 总结 2. Spring …

React进阶之路(二)-- 组件通信、组件进阶

文章目录 组件通信组件通信的意义父传子实现props说明子传父实现兄弟组件通信跨组件通信Context通信案例 React组件进阶children属性props校验组件生命周期 组件通信 组件通信的意义 组件是独立且封闭的单元&#xff0c;默认情况下组件只能使用自己的数据&#xff08;state&a…

【C++破局】C++内存管理之new与deleted剖析

​作者主页 &#x1f4da;lovewold少个r博客主页 ⚠️本文重点&#xff1a;c内存管理部分知识点梳理 &#x1f449;【C-C入门系列专栏】&#xff1a;博客文章专栏传送门 &#x1f604;每日一言&#xff1a;花有重开日&#xff0c;人无再少年&#xff01; 目录 C/C的内存分配机…

Git 命令详解

系列文章目录 C高性能优化编程系列 深入理解软件架构设计系列 高级C并发线程编程 C技能系列 期待你的关注哦&#xff01;&#xff01;&#xff01; 现在的一切都是为将来的梦想编织翅膀&#xff0c;让梦想在现实中展翅高飞。 Now everything is for the future of dream we…

【Python】Python爬虫使用代理IP的实现

前言 在爬虫的过程中&#xff0c;我们经常会遇到需要使用代理IP的情况。比如&#xff0c;针对目标网站的反爬机制&#xff0c;需要通过使用代理IP来规避风险。因此&#xff0c;本文主要介绍如何在Python爬虫中使用代理IP。 一、代理IP的作用 代理IP&#xff0c;顾名思义&…

JVM虚拟机:垃圾回收器之Parallel Old(老年代)

本文重点 本文将学习老年代的另外一种垃圾回收器Parallel Old(PO)&#xff0c;这是一种用于老年代的并行化垃圾回收器&#xff0c;它使用标记整理算法进行垃圾回收。 历史 在1.6之前&#xff0c;新生代使用Parallel Scavenge只能搭配老年代的Serial Old收集器&#xff0c;而…