根据单张图像估计深度信息是计算机视觉领域的经典问题,也是一项具有挑战的难题。由于单目图像的尺度不确定,传统方法无法计算深度值。
随着深度学习技术的发展,该范式已经成为了估计单目图像的深度信息的一种解决方案。早期的深度估计方法大多是有监督的,即要求数据集包含单目图像和对应的深度真值支撑网络模型训练。
要想让图像含深度真值非常困难,一般需要精密的深度测量设备和移动平台“捕获”。因此,高昂的成本导致数据集的数据量较小,也意味着有监督学习的深度估计方式不适用于大规模的工业场景。
对于距离的计算,常用的算法就是单目测距,但传统算法有时候并不是很准确,因此需要深度学习去进行深度估计。
下面我们基于RK3568进行相应的部署:
量化:
import cv2
import numpy as npfrom rknn.api import RKNN
import osif __name__ == '__main__':platform = 'rk3566'exp = 'SHENDU'Width = 512Height = 256MODEL_PATH = './onnx_models/SHENDU.onnx'NEED_BUILD_MODEL = True# NEED_BUILD_MODEL = Falseim_file = './dog_bike_car_640x640.jpg'# Create RKNN objectrknn = RKNN()OUT_DIR = "rknn_models"RKNN_MODEL_PATH = './{}/{}_rm_transpose.rknn'.format(OUT_DIR,exp+'-'+str(Width)+'-'+str(Height))if NEED_BUILD_MODEL:DATASET = './dataset.txt'rknn.config(mean_values=[[124, 116, 104]], std_values=[[58, 57, 57]], target_platform="rk3568")# Load modelprint('--> Loading model')ret = rknn.load_onnx(MODEL_PATH)if ret != 0:print('load model failed!')exit(ret)print('done')# Build modelprint('--> Building model')ret = rknn.build(do_quantization=True, dataset=DATASET)if ret != 0:print('build model failed.')exit(ret)print('done')# Export rknn modelif not os.path.exists(OUT_DIR):os.mkdir(OUT_DIR)print('--> Export RKNN model: {}'.format(RKNN_MODEL_PATH))ret = rknn.export_rknn(RKNN_MODEL_PATH)if ret != 0:print('Export rknn model failed.')exit(ret)print('done')else:ret = rknn.load_rknn(RKNN_MODEL_PATH)rknn.release()