PSP - 蛋白质复合物结构预测 Template Pair 特征 Mask 可视化

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/134333419

在蛋白质复合物结构预测中,在 TemplatePairEmbedderMultimer 层中 ,构建 Template Pair 特征的源码,即:

  • 将特征 template_dgrampseudo_beta_mask_2daatype_one_hotbackbone_mask_2dunit_vector(x/y/z) 特征,通过 linear 层累加到一起。
  • 其中,都需要使用 multichain_mask_2d 进行固定掩码,选择单链区域。
  • 输出维度:([1, 1102, 1102, 64]),linear层的输出 c_out 维度是 64。

源码如下:

def forward(self,template_dgram: torch.Tensor,aatype_one_hot: torch.Tensor,query_embedding: torch.Tensor,pseudo_beta_mask: torch.Tensor,backbone_mask: torch.Tensor,multichain_mask_2d: torch.Tensor,unit_vector: geometry.Vec3Array,
) -> torch.Tensor:act = 0.0pseudo_beta_mask_2d = (pseudo_beta_mask[..., None] * pseudo_beta_mask[..., None, :])pseudo_beta_mask_2d = pseudo_beta_mask_2d * multichain_mask_2dtemplate_dgram = template_dgram * pseudo_beta_mask_2d[..., None]act += self.dgram_linear(template_dgram)act += self.pseudo_beta_mask_linear(pseudo_beta_mask_2d[..., None])aatype_one_hot = aatype_one_hot.to(template_dgram.dtype)act += self.aatype_linear_1(aatype_one_hot[..., None, :, :])act += self.aatype_linear_2(aatype_one_hot[..., None, :])backbone_mask_2d = backbone_mask[..., None] * backbone_mask[..., None, :]backbone_mask_2d = backbone_mask_2d * multichain_mask_2dx, y, z = [coord * backbone_mask_2d for coord in unit_vector]act += self.x_linear(x[..., None])act += self.y_linear(y[..., None])act += self.z_linear(z[..., None])act += self.backbone_mask_linear(backbone_mask_2d[..., None])query_embedding = self.query_embedding_layer_norm(query_embedding)act += self.query_embedding_linear(query_embedding)return act

template_dgram 特征:

template_dgram

template_dgram 特征与 multichain_mask_2d

template_dgram mask

backbone_mask_2d 特征:

backbone_mask_2d

backbone_mask_2d 特征与 multichain_mask_2d

backbone_mask_2d mask

写入特征,即:

tmp_dict = dict()
tmp_dict["pseudo_beta_mask_2d_prev"] = pseudo_beta_mask_2d.cpu().numpy()
tmp_dict["pseudo_beta_mask_2d_post"] = pseudo_beta_mask_2d.cpu().numpy()
tmp_dict["template_dgram_post"] = template_dgram.cpu().numpy()
tmp_dict["backbone_mask_2d_prev"] = backbone_mask_2d.cpu().numpy()
tmp_dict["backbone_mask_2d_post"] = backbone_mask_2d.cpu().numpy()import pickle
with open("template_pair_embedder_multimer.pkl", "wb") as f:pickle.dump(tmp_dict, f)
logger.info(f"[CL] saved template_pair_embedder_multimer!")

读取特征,即:

def load_tensor_dict(input_path):"""加载特征文件['template_dgram', 'z', 'pseudo_beta_mask', 'backbone_mask', 'multichain_mask_2d','unit_vector_x', 'unit_vector_y', 'unit_vector_z']"""import picklewith open(input_path, "rb") as f:obj = pickle.load(f)print(f"[Info] feat_dict: {obj.keys()}")return objdef process_template_pair_embedder_multimer_dict(feat_dict, output_dir):print(f"[Info] feat_dict.keys: {feat_dict.keys()}")draw_tensor_2d(feat_dict["pseudo_beta_mask_2d_prev"], os.path.join(output_dir, "pseudo_beta_mask_2d_prev.png"))draw_tensor_2d(feat_dict["pseudo_beta_mask_2d_post"], os.path.join(output_dir, "pseudo_beta_mask_2d_prev.png"))draw_template_dgram(feat_dict["template_dgram_post"], os.path.join(output_dir, "template_dgram_post.png"))draw_tensor_2d(feat_dict["backbone_mask_2d_prev"], os.path.join(output_dir, "backbone_mask_2d_prev.png"))draw_tensor_2d(feat_dict["backbone_mask_2d_post"], os.path.join(output_dir, "backbone_mask_2d_post.png"))def draw_tensor_2d(feat, output_path):"""backbone_mask: torch.Size([1, 1102])"""feat = np.squeeze(feat)f, ax_arr = plt.subplots(1, 1, figsize=(8, 5))im = ax_arr.imshow(feat)f.colorbar(im, ax=ax_arr)plt.savefig(output_path, bbox_inches='tight', format='png')plt.show()def draw_template_dgram(feat, output_path):"""template_dgram: torch.Size([1, 1102, 1102, 39])"""f, ax_arr = plt.subplots(6, 7, figsize=(24, 15))ax_arr = ax_arr.flatten()feat = np.squeeze(feat)print(f"[Info] feat: {feat.shape}")for i in range(0, 42):if i <= 38:im = ax_arr[i].imshow(feat[:, :, i], interpolation='none')f.colorbar(im, ax=ax_arr[i])else:ax_arr[i].set_axis_off()plt.savefig(output_path, bbox_inches='tight', format='png')plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/138103.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

确定性 vs 非确定性:GPT 时代的新编程范式

分享嘉宾 | 王咏刚 责编 | 梦依丹 出品 | 《新程序员》编辑部 在 ChatGPT 所引爆的新一轮编程革命中&#xff0c;自然语言取代编程语言&#xff0c;在只需编写提示词/拍照就能出程序的时代&#xff0c;未来程序员真的会被简化为提示词的编写员吗&#xff1f;通过提示词操纵 …

Docker+K8s基础(重要知识点总结)

目录 一、Docker的核心1&#xff0c;Docker引擎2&#xff0c;Docker基础命令3&#xff0c;单个容器运行多个服务进程4&#xff0c;多个容器运行多个服务进程5&#xff0c;备份在容器中运行的数据库6&#xff0c;在宿主机和容器之间共享数据7&#xff0c;在容器之间共享数据8&am…

OAuth2.0双令牌

OAuth 2.0是一种基于令牌的身份验证和授权协议&#xff0c;它允许用户授权第三方应用程序访问他们的资源&#xff0c;而不必共享他们的凭据。 在OAuth 2.0中&#xff0c;通常会使用两种类型的令牌&#xff1a;访问令牌和刷新令牌。访问令牌是用于访问资源的令牌&#xff0c;可…

Proteus仿真--基于数码管设计的可调式电子钟

本文主要介绍基于51单片机的数码管设计的可调式电子钟实验&#xff08;完整仿真源文件及代码见文末链接&#xff09; 仿真图如下 其中数码管主要显示电子钟时间信息&#xff0c;按键用于调节时间 仿真运行视频 Proteus仿真--数码管设计的可调式电子钟&#xff08;仿真文件程…

【Proteus仿真】【51单片机】汽车尾灯控制设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使用按键、LED模块等。 主要功能&#xff1a; 系统运行后&#xff0c;系统运行后&#xff0c;系统开始运行&#xff0c;K1键控制左转向灯&#xff1b;…

矢量图形编辑软件Boxy SVG mac中文版软件特点

Boxy SVG mac是一款基于Web的矢量图形编辑器&#xff0c;它提供了一系列强大的工具和功能&#xff0c;可帮助用户创建精美的矢量图形。Boxy SVG是一款好用的软件&#xff0c;并且可以在Windows、Mac和Linux系统上运行。 Boxy SVG mac软件特点 简单易用&#xff1a;Boxy SVG的用…

代码随想录 Day40 动态规划08 LeetCodeT198打家劫舍 T213打家劫舍II T337 打家劫舍III

动规五部曲: 1.确定dp数组含义 2.确定递推公式 3.初始化dp数组 4.确定遍历顺序 5.打印数组排错 LeetCode T198 打家劫舍 题目链接:198. 打家劫舍 - 力扣&#xff08;LeetCode&#xff09; 题目思路: 今天我们走出背包问题,开始进入新一轮经典问题的学习:打家劫舍问题. 题目大概…

Linux文件类型与权限及其修改

后面我们写代码时&#xff0c;写完可能会出现没有执行权限什么的&#xff0c;所以我们要知道文件都有哪些权限和类型。 首先 就像我们之前目录结构图里面有个/dev,它就是存放设备文件的&#xff0c;也就是说&#xff0c;哪怕是一个硬件设备&#xff0c;例如打印机啥的&#xf…

机器学习算法——线性回归与非线性回归

目录 1. 梯度下降法1.1 一元线性回归1.2 多元线性回归1.3 标准方程法1.4 梯度下降法与标准方程法的优缺点 2. 相关系数与决定系数 1. 梯度下降法 1.1 一元线性回归 定义一元线性方程 y ω x b y\omega xb yωxb 则误差&#xff08;残差&#xff09;平方和 C ( ω , b ) …

【lib.dll.a.so】Windows和Linux两个系统下的库文件

1.静态库&&动态库 Windows平台下&#xff1a;静态库后缀为.lib&#xff0c;动态库后缀为.dll Linux平台下&#xff1a;静态库格式为lib**.a&#xff0c;动态库格式为lib**.so 谈论两者区别之前&#xff0c;需要对程序编译和运行有一个大致认识&#xff1a; 代码想要…

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例 散射参数矩阵有实际的物理意义&#xff0c;但是其无法级联计算&#xff0c;但是ABCD参数和传输散射矩阵可以级联计算&#xff0c;在此先简单介绍ABCD参数矩阵的基本用法。 1、微带线的ABCD矩阵的推导 其他的一些常用的二端…

基于SSM的自习室预订座位管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

StartUML的基本使用

文章目录 简介和安装创建包创建类视图时序图 简介和安装 最近在学习一个项目的时候用到了StartUML来构造项目的类图和时序图 虽然vs2019有类视图&#xff0c;但是也不是很清晰&#xff0c;并没有生成uml图&#xff0c;但是宇宙最智能的IDE IDEA有生成uml图的功能 下面就简单介…

C++ static关键字

C static关键字 1、概述2、重要概念解释3、分情况案例解释3.1 static在类内使用3.2 static在类外使用案例一&#xff1a;案例二&#xff1a;案例三 1、概述 static关键字分为两种情况&#xff1a; 1.在类内使用 2.在类外使用 2、重要概念解释 &#xff08;1&#xff09;翻译…

redis学习指南--概览篇

redis怎么学 官方学习网站&#xff1a; redis.cn 1、整体了解redis redis是一个内存数据库、kv数据库&#xff0c;数据结构数据库&#xff0c;redis中数据都是存储在redis中&#xff0c;可以通过key查找value&#xff0c;value可以有多种数据结构&#xff0c;有&#xff1a;…

Android修行手册 - POI操作Excel常用样式(字体,背景,颜色,Style)

点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&…

一键批量转码:将MP4视频转为MP3音频的简单方法

随着数字媒体设备的普及&#xff0c;视频和音频格式转换的需求也越来越常见。其中&#xff0c;将MP4视频批量转换为MP3音频的需求尤为普遍。无论是为了提取视频中的背景音乐&#xff0c;还是为了在手机或电脑上方便地收听视频音频&#xff0c;这个过程都变得非常重要。接下来我…

Windows10+vs2015源码编译subversion

Windows源码安装subversion 一、运行环境 windows10 64位系统 VS2015完整安装 Subversion1.6.3 二、源码编译环境配置 1、python环境安装 python-2.4.msi2、perl环境安装 ActivePerl-5.8.8.822-MSWin32-x86-280952.msi3、openssl编译 C:>cd openssl-0.9.7f C:>p…

大数据毕业设计选题推荐-智慧消防大数据平台-Hadoop-Spark-Hive

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

【CASS精品教程】cass3d基于DOM和DEM生成倾斜三维模型

和EPS一样&#xff0c;cass3d也可以生成三维模型。本文讲解 cass3d基于pix4d生成的正射影像DOM和DSM生成倾斜三维模型&#xff0c;并进行三维测图。 一、三维倾斜模型打开 打开cass11.0软件&#xff0c;打开三维窗口&#xff0c;点击打开模型&#xff0c;选择基于dom和dsm生成…