关于做电商网站导流项目/郑州今日头条

关于做电商网站导流项目,郑州今日头条,青岛市北区网站制作公司,网站建设+泰安0 前言 无人驾驶技术是机器学习为主的一门前沿领域,在无人驾驶领域中机器学习的各种算法随处可见,今天学长给大家介绍无人驾驶技术中的车道线检测。 1 车道线检测 在无人驾驶领域每一个任务都是相当复杂,看上去无从下手。那么面对这样极其…

0 前言

无人驾驶技术是机器学习为主的一门前沿领域,在无人驾驶领域中机器学习的各种算法随处可见,今天学长给大家介绍无人驾驶技术中的车道线检测。

1 车道线检测

在无人驾驶领域每一个任务都是相当复杂,看上去无从下手。那么面对这样极其复杂问题,我们解决问题方式从先尝试简化问题,然后由简入难一步一步尝试来一个一个地解决问题。车道线检测在无人驾驶中应该算是比较简单的任务,依赖计算机视觉一些相关技术,通过读取
camera 传入的图像数据进行分析,识别出车道线位置,我想这个对于 lidar
可能是无能为力。所以今天我们就从最简单任务说起,看看有哪些技术可以帮助我们检出车道线。

我们先把问题简化,所谓简化问题就是用一些条件限制来缩小车道线检测的问题。我们先看数据,也就是输入算法是车辆行驶的图像,输出车道线位置。

更多时候我们如何处理一件比较困难任务,可能有时候我们拿到任务时还没有任何思路,不要着急也不用想太多,我们先开始一步一步地做,从最简单的开始做起,随着做就会有思路,同样一些问题也会暴露出来。我们先找一段视频,这段视频是我从网上一个关于车道线检测项目中拿到的,也参考他的思路来做这件事。好现在就开始做这件事,那么最简单的事就是先读取视频,然后将其显示在屏幕以便于调试。

2 目标

检测图像中车道线位置,将车道线信息提供路径规划。

3 检测思路

  • 图像灰度处理
  • 图像高斯平滑处理
  • canny 边缘检测
  • 区域 Mask
  • 霍夫变换
  • 绘制车道线

4 代码实现

4.1 视频图像加载

    import cv2
​    import numpy as np
​    import sys
​    import pygamefrom pygame.locals import *class Display(object):def __init__(self,Width,Height):pygame.init()pygame.display.set_caption('Drive Video')self.screen = pygame.display.set_mode((Width,Height),0,32)def paint(self,draw):self.screen.fill([0,0,0])draw = cv2.transpose(draw)draw = pygame.surfarray.make_surface(draw)self.screen.blit(draw,(0,0))pygame.display.update()​    
​    
​    if __name__ == "__main__":
​        solid_white_right_video_path = "test_videos/丹成学长车道线检测.mp4"
​        cap = cv2.VideoCapture(solid_white_right_video_path)
​        Width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
​        Height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
​    display = Display(Width,Height)while True:ret, draw = cap.read()draw = cv2.cvtColor(draw,cv2.COLOR_BGR2RGB)if ret == False:breakdisplay.paint(draw)for event in pygame.event.get():if event.type == QUIT:sys.exit()

上面代码学长就不多说了,默认大家对 python 是有所了解,关于如何使用 opencv 读取图片网上代码示例也很多,大家一看就懂。这里因为我用的是 mac
有时候显示视频图像可能会有些问题,所以我们用 pygame 来显示 opencv 读取图像。这个大家根据自己实际情况而定吧。值得说一句的是 opencv
读取图像是 BGR 格式,要想在 pygame 中正确显示图像就需要将 BGR 转换为 RGB 格式。

4.2 车道线区域

现在这个区域是我们根据观测图像绘制出来,

在这里插入图片描述

 def color_select(img,red_threshold=200,green_threshold=200,blue_threshold=200):ysize,xsize = img.shape[:2]color_select = np.copy(img)rgb_threshold = [red_threshold, green_threshold, blue_threshold]thresholds = (img[:,:,0] < rgb_threshold[0]) \| (img[:,:,1] < rgb_threshold[1]) \| (img[:,:,2] < rgb_threshold[2])color_select[thresholds] = [0,0,0]return color_select

效果如下:
在这里插入图片描述

4.3 区域

我们要检测车道线位置相对比较固定,通常出现车的前方,所以我们通过绘制,也就是仅检测我们关心区域。通过创建 mask 来过滤掉那些不关心的区域保留关心区域。

4.4 canny 边缘检测

有关边缘检测也是计算机视觉。首先利用梯度变化来检测图像中的边,如何识别图像的梯度变化呢,答案是卷积核。卷积核是就是不连续的像素上找到梯度变化较大位置。我们知道
sobal 核可以很好检测边缘,那么 canny 就是 sobal 核检测上进行优化。

# 示例代码,作者丹成学长:Q746876041def canny_edge_detect(img):
​        gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
​        kernel_size = 5
​        blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)
​    low_threshold = 180high_threshold = 240edges = cv2.Canny(blur_gray, low_threshold, high_threshold)return edges

在这里插入图片描述

4.5 霍夫变换(Hough transform)

霍夫变换是将 x 和 y 坐标系中的线映射表示在霍夫空间的点(m,b)。所以霍夫变换实际上一种由繁到简(类似降维)的操作。当使用 canny
进行边缘检测后图像可以交给霍夫变换进行简单图形(线、圆)等的识别。这里用霍夫变换在 canny 边缘检测结果中寻找直线。

    ignore_mask_color = 255 # 获取图片尺寸imshape = img.shape# 定义 mask 顶点vertices = np.array([[(0,imshape[0]),(450, 290), (490, 290), (imshape[1],imshape[0])]], dtype=np.int32)# 使用 fillpoly 来绘制 maskcv2.fillPoly(mask, vertices, ignore_mask_color)masked_edges = cv2.bitwise_and(edges, mask)# 定义Hough 变换的参数rho = 1 theta = np.pi/180threshold = 2min_line_length = 4 # 组成一条线的最小像素数max_line_gap = 5    # 可连接线段之间的最大像素间距# 创建一个用于绘制车道线的图片line_image = np.copy(img)*0 # 对于 canny 边缘检测结果应用 Hough 变换# 输出“线”是一个数组,其中包含检测到的线段的端点lines = cv2.HoughLinesP(masked_edges, rho, theta, threshold, np.array([]),min_line_length, max_line_gap)# 遍历“线”的数组来在 line_image 上绘制for line in lines:for x1,y1,x2,y2 in line:cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)color_edges = np.dstack((edges, edges, edges)) import mathimport cv2import numpy as np"""Gray ScaleGaussian SmoothingCanny Edge DetectionRegion MaskingHough TransformDraw Lines [Mark Lane Lines with different Color]"""class SimpleLaneLineDetector(object):def __init__(self):passdef detect(self,img):# 图像灰度处理gray_img = self.grayscale(img)print(gray_img)#图像高斯平滑处理smoothed_img = self.gaussian_blur(img = gray_img, kernel_size = 5)#canny 边缘检测canny_img = self.canny(img = smoothed_img, low_threshold = 180, high_threshold = 240)#区域 Maskmasked_img = self.region_of_interest(img = canny_img, vertices = self.get_vertices(img))#霍夫变换houghed_lines = self.hough_lines(img = masked_img, rho = 1, theta = np.pi/180, threshold = 20, min_line_len = 20, max_line_gap = 180)# 绘制车道线output = self.weighted_img(img = houghed_lines, initial_img = img, alpha=0.8, beta=1., gamma=0.)return outputdef grayscale(self,img):return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)def canny(self,img, low_threshold, high_threshold):return cv2.Canny(img, low_threshold, high_threshold)def gaussian_blur(self,img, kernel_size):return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)def region_of_interest(self,img, vertices):mask = np.zeros_like(img)   if len(img.shape) > 2:channel_count = img.shape[2]  ignore_mask_color = (255,) * channel_countelse:ignore_mask_color = 255cv2.fillPoly(mask, vertices, ignore_mask_color)masked_image = cv2.bitwise_and(img, mask)return masked_imagedef draw_lines(self,img, lines, color=[255, 0, 0], thickness=10):for line in lines:for x1,y1,x2,y2 in line:cv2.line(img, (x1, y1), (x2, y2), color, thickness)def slope_lines(self,image,lines):img = image.copy()poly_vertices = []order = [0,1,3,2]left_lines = [] right_lines = [] for line in lines:for x1,y1,x2,y2 in line:if x1 == x2:pass else:m = (y2 - y1) / (x2 - x1)c = y1 - m * x1if m < 0:left_lines.append((m,c))elif m >= 0:right_lines.append((m,c))left_line = np.mean(left_lines, axis=0)right_line = np.mean(right_lines, axis=0)​    
​            for slope, intercept in [left_line, right_line]:
​    rows, cols = image.shape[:2]y1= int(rows) y2= int(rows*0.6)x1=int((y1-intercept)/slope)x2=int((y2-intercept)/slope)poly_vertices.append((x1, y1))poly_vertices.append((x2, y2))self.draw_lines(img, np.array([[[x1,y1,x2,y2]]]))poly_vertices = [poly_vertices[i] for i in order]cv2.fillPoly(img, pts = np.array([poly_vertices],'int32'), color = (0,255,0))return cv2.addWeighted(image,0.7,img,0.4,0.)def hough_lines(self,img, rho, theta, threshold, min_line_len, max_line_gap):lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)line_img = self.slope_lines(line_img,lines)return line_imgdef weighted_img(self,img, initial_img, alpha=0.1, beta=1., gamma=0.):lines_edges = cv2.addWeighted(initial_img, alpha, img, beta, gamma)return lines_edgesdef get_vertices(self,image):rows, cols = image.shape[:2]bottom_left  = [cols*0.15, rows]top_left     = [cols*0.45, rows*0.6]bottom_right = [cols*0.95, rows]top_right    = [cols*0.55, rows*0.6] ver = np.array([[bottom_left, top_left, top_right, bottom_right]], dtype=np.int32)return ver

在这里插入图片描述

4.6 HoughLinesP 检测原理

接下来进入代码环节,学长详细给大家解释一下 HoughLinesP 参数的含义以及如何使用。


​ lines = cv2.HoughLinesP(cropped_image,2,np.pi/180,100,np.array([]),minLineLength=40,maxLineGap=5)

  • 第一参数是我们要检查的图片 Hough accumulator 数组
  • 第二个和第三个参数用于定义我们 Hough 坐标如何划分 bin,也就是小格的精度。我们通过曲线穿过 bin 格子来进行投票,我们根据投票数量来决定 p 和 theta 的值。2 表示我们小格宽度以像素为单位 。

在这里插入图片描述
我们可以通过下图划分小格,只要曲线穿过就会对小格进行投票,我们记录投票数量,记录最多的作为参数

在这里插入图片描述
在这里插入图片描述

  • 如果定义尺寸过大也就失去精度,如果定义格子尺寸过小虽然精度上来了,这样也会打来增长计算时间。
  • 接下来参数 100 表示我们投票为 100 以上的线才是符合要求是我们要找的线。也就是在 bin 小格子需要有 100 以上线相交于此才是我们要找的参数。
  • minLineLength 给 40 表示我们检查线长度不能小于 40 pixel
  • maxLineGap=5 作为线间断不能大于 5 pixel

4.6.1 定义显示车道线方法


​ def disply_lines(image,lines):
​ pass

通过定义函数将找到的车道线显示出来。


​ line_image = disply_lines(lane_image,lines)

4.6.2 查看探测车道线数据结构


​ def disply_lines(image,lines):
​ line_image = np.zeros_like(image)
​ if lines is not None:
​ for line in lines:
​ print(line)

先定义一个尺寸大小和原图一样的矩阵用于绘制查找到车道线,我们先判断一下是否已经找到车道线,lines 返回值应该不为 None
是一个矩阵,我们可以简单地打印一下看一下效果


​ [[704 418 927 641]]
​ [[704 426 791 516]]
​ [[320 703 445 494]]
​ [[585 301 663 381]]
​ [[630 341 670 383]]

4.6.3 探测车道线

看数据结构[[x1,y1,x2,y2]] 的二维数组,这就需要我们转换一下为一维数据[x1,y1,x2,y2]

def disply_lines(image,lines):
​        line_image = np.zeros_like(image)if liness is not None:for line in lines:
​                x1,y1,x2,y2 = line.reshape(4)
​                cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)return line_image
​    line_image = disply_lines(lane_image,lines)
cv2.imshow('result',line_image)

在这里插入图片描述

4.6.4 合成

有关合成图片我们是将两张图片通过给一定权重进行叠加合成。

在这里插入图片描述

4.6.5 优化

在这里插入图片描述

探测到的车道线还是不够平滑,我们需要优化,基本思路就是对这些直线的斜率和截距取平均值然后将所有探测出点绘制到一条直线上。

  def average_slope_intercept(image,lines):left_fit = []right_fit = []for line in lines:x1, y1, x2, y2 = line.reshape(4)parameters = np.polyfit((x1,x2),(y1,y2),1)print(parameters)

这里学长定义两个数组 left_fit 和 right_fit 分别用于存放左右两侧车道线的点,我们打印一下 lines 的斜率和截距,通过 numpy
提供 polyfit 方法输入两个点我们就可以得到通过这些点的直线的斜率和截距。


​ [ 1. -286.]
​ [ 1.03448276 -302.27586207]
​ [ -1.672 1238.04 ]
​ [ 1.02564103 -299.



​ [ 1.02564103 -299.

def average_slope_intercept(image,lines):left_fit = []right_fit = []for line in lines:x1, y1, x2, y2 = line.reshape(4)parameters = np.polyfit((x1,x2),(y1,y2),1)# print(parameters)slope = parameters[0]intercept = parameters[1]if slope < 0:left_fit.append((slope,intercept))else:right_fit.append((slope,intercept))print(left_fit)print(right_fit)

我们输出一下图片大小,我们图片是以其左上角作为原点 0 ,0 来开始计算的,所以我们直线从图片底部 700 多向上绘制我们无需绘制全部可以截距一部分即可。

在这里插入图片描述

    def make_coordinates(image, line_parameters):slope, intercept = line_parametersy1 = image.shape[0]y2 = int(y1*(3/5)) x1 = int((y1 - intercept)/slope)x2 = int((y2 - intercept)/slope)# print(image.shape)return np.array([x1,y1,x2,y2])

所以直线开始和终止我们给定 y1,y2 然后通过方程的斜率和截距根据y 算出 x。

    
​    averaged_lines = average_slope_intercept(lane_image,lines);
​    line_image = disply_lines(lane_image,averaged_lines)
​    combo_image = cv2.addWeighted(lane_image,0.8, line_image, 1, 1,1)
​    cv2.imshow('result',combo_image)

在这里插入图片描述

5 最后

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137773.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【蓝桥杯选拔赛真题17】C++时间换算 第十二届蓝桥杯青少年创意编程大赛C++编程选拔赛真题解析

目录 C/C++时间换算 一、题目要求 1、编程实现 2、输入输出 二、算法分析 <

【Git】GUI图形化界面的使用SSH协议IDEA集成Git

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Git的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一. GUI图形化界面的使用 1.使用Gui​ 2.常…

【Git】中Gui的使用和SSH协议的讲解及IDEA开发中使用git

目录 一、Gui使用 1. 使用 2. 功能 二、SSH协议 1. 讲解 2. 生成密钥 3. 远程仓库绑定公钥 三、IDEA使用 1. IDEA配置git 2. IDEA安装gitee 3. IDEA中登入Git 4. 项目分享 5. 克隆分享的项目 6. idea上传远程 一、Gui使用 (Gui) 是指图形用户界面&#xff0c;它…

数据结构-图的课后习题(2)

题目要求&#xff1a; 对于下面的这个无向网&#xff0c;给出&#xff1a; 1.“深度优先搜索序列”&#xff08;从V1开始&#xff09; 2.“广度优先序列”&#xff08;从V1开始&#xff09; 3.“用Prim算法求最小生成树” 代码实现&#xff1a; 1.深度优先搜索&#xff1a…

Docker修改容器内部文件的三种方法

为啥要记录呀 今天在修改Docker内部文件的时候&#xff0c;安装vim居然失败了&#xff0c;在执行apt-get update时一直有几个404&#xff0c;解决无果&#xff0c;最后放弃安装vim&#xff0c;将文件拷贝出来修改&#xff0c;然后再拷贝到docker内部。记录一下如何修改Docker内…

农业大棚智能化改造升级与远程视频监管方案,助力智慧农业建设发展

一、需求分析 随着现代化技术的发展&#xff0c;农业大棚的智慧化也成为当前备受关注的智慧农业发展手段。利用先进的信息化手段来对农业大棚进行管理&#xff0c;采集和掌握作物的生长状况、作业监督、生态环境等信息数据&#xff0c;实现精准操作、精细管理&#xff0c;远程…

CCIA数安委等组织发布PIA星级标识名单,合合信息再次通过数据安全领域权威评估

近期&#xff0c;“中国网络安全产业联盟&#xff08;CCIA&#xff09;数据安全工作委员会”、“数据安全共同体计划&#xff08;DSC&#xff09;”等组织共同发起“个人信息保护影响评估专题工作&#xff08;简称“PIA专题工作”&#xff09;”&#xff0c;并为入围企业颁发了…

solidworks对电脑要求高吗?2023solidworks配置要求

solidworks对电脑要求高吗&#xff1f;SolidWorks是一款功能强大的三维CAD软件&#xff0c;对电脑配置有一定的要求。一般来说&#xff0c;运行SolidWorks需要的电脑配置包括较高的处理器性能、足够的内存和存储空间&#xff0c;以及一块性能良好的显卡。此外&#xff0c;对于大…

Elasticsearch 作为 GenAI 缓存层

作者&#xff1a;JEFF VESTAL&#xff0c;BAHA AZARMI 探索如何将 Elasticsearch 集成为缓存层&#xff0c;通过降低 token 成本和响应时间来优化生成式 AI 性能&#xff0c;这已通过实际测试和实际实施进行了证明。 随着生成式人工智能 (GenAI) 不断革新从客户服务到数据分析…

启动Docker服务后显示Docker Engine stopped

1、重新启动Docker服务&#xff1a;打开Windows服务管理器&#xff08;可以在开始菜单中搜索&#xff09;&#xff0c;找到"Docker Desktop Service"或类似命名的服务&#xff0c;右键单击并选择"重启"。稍等片刻&#xff0c;看看是否重新启动成功 2、尝试…

P6入门:项目初始化2-项目详情之日期Date

前言 使用项目详细信息查看和编辑有关所选项目的详细信息&#xff0c;在项目创建完成后&#xff0c;初始化项目是一项非常重要的工作&#xff0c;涉及需要设置的内容包括项目名&#xff0c;ID,责任人&#xff0c;日历&#xff0c;预算&#xff0c;资金&#xff0c;分类码等等&…

openinstall携手途虎养车,赋能汽车服务数字化

近日&#xff0c;openinstall与中国领先的一站式汽车服务平台途虎养车再次续约&#xff0c;双方将开启第三年合作。过去两年&#xff0c;途虎在建设线上线下一体化数字平台的过程中&#xff0c;深度结合openinstall传参归因与渠道统计技术&#xff0c;打造出了一套高效的渠道来…

5G-A 商用加速,赋能工业互联网

2019 年 6 月&#xff0c;中国工业和信息化部发放 5G 商用牌照。同年 10 月&#xff0c;三大运营商公布 5G 商用套餐&#xff0c;11 月 1 日正式上线 5G 商用套餐&#xff0c;标志中国正式进入 5G 商用新纪元。今年是 5G 商用的第五年&#xff0c;在当前数字经济蓬勃发展的催化…

在gitlab中的使用kaniko打造流水线

文章目录 kaniko工具介绍环境说明系统版本组件版本组件部署参考链接 部署harbor下载解压、创建相关目录配置部署 gitlab集成harbor集成项目ci配置最终结果 kaniko工具介绍 kaniko 是一种从容器或 Kubernetes 集群内的 Dockerfile 构建容器镜像的工具。 kaniko 解决了使用 Doc…

史上第一款AOSP开发的IDE (支持Java/Kotlin/C++/Jni/Native/Shell/Python)

ASFP Study 史上第一款AOSP开发的IDE &#xff08;支持Java/Kotlin/C/Jni/Native/Shell/Python&#xff09; 类似于Android Studio&#xff0c;可用于开发Android系统源码。 Android studio for platform&#xff0c;简称asfp(爱上富婆)。 背景&下载&使用 背景 由…

标本传送设备物联网应用案例|蓝蜂物联网一体化方案

标本传送设备物联网应用案例 标本传输系统被大量应用到现代医院场景中&#xff0c;系统各个设备的运行情况直接影响到整个医院系统的正常稳定&#xff0c;所以对于标本传输系统的实时监控和及时运维是维持医院稳定和规避风险的重中之重。 针对标本传输系统应用过程中的数据统…

Unity | Shader(着色器)和material(材质)的关系

一、前言 在上一篇文章中 【精选】Unity | Shader基础知识&#xff08;什么是shader&#xff09;_unity shader_菌菌巧乐兹的博客-CSDN博客 我们讲了什么是shader&#xff0c;今天我们讲一下shder和material的关系 二、在unity中shader的本质 unity中&#xff0c;shader就…

python应用程序图标的设置(任务栏)

在cmd中输入以下内容 pyinstaller -F -w -i 图标路径 py文件路径

微服务概念

微服务 微服务是什么 In short, the microservice architectural style [1] is an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource A…

python+requests接口自动化测试

原来的web页面功能测试转变成接口测试&#xff0c;之前大多都是手工进行&#xff0c;利用postman和jmeter进行的接口测试&#xff0c;后来&#xff0c;组内有人讲原先web自动化的测试框架移驾成接口的自动化框架&#xff0c;使用的是java语言&#xff0c;但对于一个学java&…