ARM 基础学习记录 / ARM 裸机编程

汇编程序调用 C 程序详情

在 C 程序和 ARM 汇编程序之间相互调用时必须遵守 ATPCS 规则,其是基于 ARM 指令集和 THUMB 指令集过程调用的规范,规定了调用函数如何传递参数,被调用函数如何获取参数,以何种方式传递函数返回值。

  1. 寄存器 R0~R15 在 ATPCS 规则的使用

    • 在函数中,通过寄存器 R0~R3 来传递参数,被调用的函数在返回前无需恢复寄存器 R0~R3 的内容。

    • 在函数中,通过寄存器 R4~R11 来保存局部变量。

    • 寄存器 R12 用作函数间 scratch 寄存器。

    • 寄存器 R13 用作栈指针,记作 SP ,在函数中寄存器 R13 不能用做其他用途,寄存器 SP 在进入函数时的值和退出函数时的值必须相等。

    • 寄存器 R14 用作链接寄存器,记作 LR ,它用于保存函数的返回地址,如果在函数中保存了返回地址,则 R14 可用作其它的用途。

    • 寄存器 R15 是程序计数器,记作 PC ,它不能用作其他用途。

  2. 汇编程序向 C 程序函数传递参数

    • 当参数小于等于 4 个时,使用寄存器 R0~R3 来进行参数传递。

    • 当参数大于 4 个时,前四个参数按照上面方法传递,剩余参数传送到栈中,入栈的顺序与参数顺序相反,即最后一个参数先入栈。

  3. C 程序函数返回结果给汇编程序

    • 结果为一个 32 位的整数时,通过寄存器 R0 返回。

    • 结果为一个 64 位整数时,通过 R0 和 R1 返回,依此类推。

    • 结果为一个浮点数时,通过浮点运算部件的寄存器 f0,d0 或 s0 返回。

    • 结果为一个复合的浮点数时,通过寄存器 f0-fN 或者 d0~dN 返回。

    • 对于位数更多的结果,通过调用内存来传递。

  4. 当 C 程序从一个函数跳转到另一个函数时,会先把源函数的 CPU 的寄存器和函数内的局部变量都入栈,当跳回时再出栈,这一过程的汇编代码是当 C 程序编译成汇编时被编译器自动添加。


imx6ull 裸机编程相关

这里是处理器启动流程等的介绍,属于科普环节,有个印象,会加深对于处理器如何运行的理解,非必要记住,而是为以后的操作说明每一个步骤都在做什么事情。此部分理解为主。

裸机映像文件合成详情

先说原理,看 imx6ull 芯片手册可知,芯片上电时内部的 boot ROM 固化的程序会通过外部引脚确定启动方式(USB\NAND\EMMC\SD等),将应用的二进制数据(app.bin)从存储区(NAND\EMMC\SD等)搬运到内存区(DDR2\3等),然后跳转到内存区的程序处开始执行程序。这个过程是这个芯片自动完成的,但是需要根据规定合成烧录到存储区的映像文件, 在编译得到应用的二进制文件 app.bin(这个就是比如 裸机应用固件 或 Linux 固件等)之后,再用 mkimage 工具(gcc-arm-linux-gnueabihf-6.2.1 编译器自带的)根据 imximage.cfg.cfgtmp 这个文件的信息,合成头部信息,再与 app.bin 组合生成 .imx 文件, .imx 的头部再添加 1KB 的数据(可以全为0,也可包含分区表等数据) 组合生成 .img 文件,具体如下:

  • .imx 文件 = 头部信息( IVT + Boot data + DCD) + app.bin -> 用于在烧写工具中烧写到 EMMC 中,烧写工具会自动将其烧写到 1KB 偏移处。

  • .img 文件 = 1k.bin + .imx 文件 = 1k.bin + 头部信息( IVT + Boot data + DCD) + app.bin -> 用于在烧写工具中烧写到 SD 中,烧写工具会将其烧写到 0 位置处(对与 SD 的烧写,此工具不会自动加 1KB 偏移...)。

头部信息包含了指示 boot ROM 程序要把 app.bin 数据搬运到内存的何处,其大小,以及包含了配置 DDR 的寄存器、引脚等数据等待,具体如下:

  • IVT:Image vector table,含 header(含 tag、length、version,这 3 项,length 表示 IVT 的大小)、entry(指示 app.bin 在内存中的位置,即程序数据被复制到内存哪里)、dcd(指示 DCD 数据 在内存中的位置)、boot_data(指示 Boot data 在内存中的位置)、self(指示 IVT 在内存中的位置)等,共占 32*8bit 大小,entry 为 app.bin 要在内存中的目的地址。

  • Boot data:start(映像文件在内存中的地址,为 IVT 在内存中的绝对地址减去 1024 偏移)、length(整个映像文件的长度,含 1k.bin)、plugin,共占 32*3bit 大小。

  • DCD:配 imx6ull 芯片的寄存器,如 DDR 的配置等,可自定,复杂,mkimage 根据 imximage.cfg.cfgtmp 这个文件的信息合成。

    其中,entry(指示 app.bin 在内存中的位置,即程序数据被复制到内存哪里)的地址在 Makefile 中调用 mkimage 工具时是可以指定的,在"重定位"章节会细说。

具体分布:

  • 头部数据和偏移区使用 mkimage 工具生成,官方都会提供的。

  • 最前面的灰色部分就是偏移数据区,对于EMMC/SD存储区设备是 1KB,对于 NAND 是256B,具体看手册。

最终生成的 .img 文件结构:

imx6ull 上电启动过程分析:

  1. boot Rom 会把 EMMC 或 SD 卡的前 4K 数据(涵盖了头部信息( IVT + Boot data + DCD)这些等)读入到芯片内部 RAM 运行。

  2. boot Rom 根据 DCD 进行初始化 DDR。

  3. boot Rom 根据 IVT,从 EMMC 或 SD 卡中将 app.bin 读到 DDR 的 0x80100000 地址(IVT 的 entry,如上图所示)。

  4. 跳转到 DDR 的 0x80100000 地址执行,即 CPU 开始从内存 0x80100000 地址开始执行机器码。

    以上步骤执行完之后的 DDR 内存图示:(这是反汇编 应用固件 产生的 机器码-汇编码 相互对应的内容)

重定位、启动和编译

各段数据重排序

每一个汇编成机器码的 .o 文件都会分为这几个数据段:

  • 代码段(.text):存放代码指令;

  • 只读数据段(.rodata):存放有初始值并且 const 修饰的全局类变量;

  • 数据段(.data):存放有初始值的全局类变量(有非零初始值的变量,如 char A = 'A';);

  • 零初始化段(.bss):存放没有初始值或初始值为0的全局类变量(如 int g_intA = 0;int g_intB;,这些存放在 .bss 段);

  • 注释段(.comment):存放注释。

在 Makefile 文件中,在链接步骤,通过 LD 工具,把各个 .o 文件的各个数据段,按照 imx6ull.lds 定义的顺序安放,即各段数据重排序,最后合成一个二进制文件 app.bin,其中的代码段(.text)、只读数据段(.rodata)和数据段(.data)等都来自于前面各个 .o 文件,每个段 的顺序按照 imx6ull.lds 安放。

链接脚本 imx6ull.lds 解析(一体式链接脚本格式):

SECTIONS {. = 0x80100000;                      //设定链接地址为0x80100000
​. = ALIGN(4);                        //将当前地址以4字节为标准对齐.text      :                         //创建段,其名称为 .text{                                    //.text包含的内容为所有链接文件的数据段*(.text)                         // *:表示所有文件}
​. = ALIGN(4);                        //将当前地址以4字节为标准对齐.rodata : { *(.rodata) }             //.rodata存放在.text之后,包含所有链接文件的只读数据段
​. = ALIGN(4);.data : { *(.data) }                 //.data存放在.rodata之后,包含所有链接文件的只读数据段
​. = ALIGN(4);__bss_start = .;                     //将当前地址的值存储为变量__bss_start.bss : { *(.bss) *(.COMMON) }        //.bss存放在.data段之后, 包含所有文件的bss段和注释段__bss_end = .;                       //将当前地址的值存储为变量__bss_end
}
​

可见 imx6ull.lds 文件给出 .bss 段的头、尾地址标识:__ bss_start__ bss_end

启动文件程序

以最简单的裸机点灯程序的启动文件 start.S 为例。仅为示例,过于简单,完整示例可看 下面 “ARM异常处理 & 启动文件的示例” 一节。

.text
.global  _start
_start:                 /* 设置栈地址 */ldr  sp,=0x80200000bl main
​
halt:b  halt
Makefile 文件解析

以最简单的裸机点灯程序的 makefile 为例。

PREFIX=arm-linux-gnueabihf-
CC=$(PREFIX)gcc
LD=$(PREFIX)ld
AR=$(PREFIX)ar
OBJCOPY=$(PREFIX)objcopy
OBJDUMP=$(PREFIX)objdump
​
led.img : start.S  led.c main.c$(CC) -nostdlib -g -c -o start.o start.S                 # 把启动文件 .s 和各个 .c 文件都汇编为机器码文件 .o$(CC) -nostdlib -g -c -o led.o led.c    $(CC) -nostdlib -g -c -o main.o main.c  $(LD) -T imx6ull.lds -g start.o led.o main.o -o led.elf  # 链接,按照 imx6ull.lds 定义的格式,各段数据重排序,把各个 .o 文件组成 .elf 文件$(OBJCOPY) -O binary -S led.elf  led.bin                 # .elf 转为 .bin 二进制文件,应用二进制文件$(OBJDUMP) -D -m arm  led.elf  > led.dis    mkimage -n ./tools/imximage.cfg.cfgtmp -T imximage -e 0x80100000 -d led.bin led.imx# 使用 mkimage 生成 头部数据,并与 .bin 组合,产生 .imx 文件dd if=/dev/zero of=1k.bin bs=1024 count=1                # 创建一个 1KB 的空文件 1k.bincat 1k.bin led.imx > led.img                             # 把 1k.bin 放在 .imx 前头,组合成 .img 文件
​
clean:rm -f led.dis  led.bin led.elf led.imx led.img *.o
​
清零 bss 段

在 启动文件 汇编程序中,根据 .bss 段的头、尾地址(__ bss_start__ bss_end)来对此区域清零,让 C 程序中未定义初始值或零初始值的变量在初始化时都为零值,而非随机值。

附程序:

clean_bss:ldr r1, =__bss_start    @ 将链接脚本变量__bss_start变量保存于r1ldr r2, =__bss_end      @ 将链接脚本变量__bss_end变量保存于r2mov r3, #0
clean:strb r3, [r1]           @ 将当前地址下的数据清零add r1, r1, #1          @ 将r1内存储的地址+1cmp r1, r2              @ 相等:清零操作结束;否则继续执行clean函数清零bss段bne cleanmov pc, lr

并在进入主函数前调用 bl clean_bss /* 清零bss段 */

数据段再单独重定位

事出有因,想要把 .data 段的数据放到 片内内存中以加快访问速度,参考芯片手册得到片内RAM的地址为:0x900000 ~ 0x91FFFF,共128KB(当然不会很大,也就裸机下的编一编、学一学行,Linux 系统等的大型工程就不适合了),所以我们将 .data 段重定位后的地址设置为0x900000。

第一步:把链接脚本 imx6ull.lds 中的 .data : { *(.data) }换成下面的:

     data_load_addr = .;                    .data 0x900000 : AT(data_load_addr) {data_start = . ;                  //addr = 0x900000*(.data)data_end = . ;                    //addr = 0x900000 + SIZEOF(.data)}

第二步:在启动文件中,复制 data 段数据到片内内存 data_start

 copy_data:/* 重定位data段 */ldr r1, =data_load_addr     /* data段的加载地址, 从链接脚本中得到, 0x8010xxxx */ldr r2, =data_start        /* data段重定位地址, 从链接脚本中得到, 0x900000 */ldr r3, =data_end          /* data段结束地址, 从链接脚本中得到,0x90xxxx */cpy:ldr r4, [r1]              /* 从r1读到r4 */str r4, [r2]              /* r4存放到r2 */add r1, r1, #4           /* r1+1 */add r2, r2, #4           /* r2+1 */cmp r2, r3               /* r2 r3比较 */bne cpy                  /* 如果不等则继续拷贝 */
​mov pc, lr               /* 跳转回调用copy_data函数之前的地址 */

并在进入主函数前调用 bl copy_data /* 复制 data 段数据到片内内存 data_start */

100ask imx6ull 的 《IMX6ULL裸机开发完全手册》中的 "第13篇 IMX6ULL裸机开发 - 9.4.3 总结:如何在C函数中使用链接脚本变量" 章节讲了如何在 C 程序中调用链接脚本中的表示地址的变量,从而可以在 C 程序中实现 "清零 bss 段"和"数据段搬运到片内内存",而不用在启动代码里完成这些操作。

100ask imx6ull 的 《IMX6ULL裸机开发完全手册》中的 "第13篇 IMX6ULL裸机开发 - 9.5 重定位全部代码" 章节讲了将全部应用的二进制数据搬到芯片的内部内存(128KB),并在其内运行,并且使用 C 程序实现 bss 段清零。其步骤是:第一步,修改链接脚本,段顶位置加上 . = 0x900000;,并加上头、尾的地址标识字符;第二步,在 C 程序中利用头、尾的地址标识字符将其间的数据搬运到芯片内部内存地址;第三步,修改启动文件汇编程序,跳转到内部内存的应用数据处执行。

修改应用在内存中的存放地址

IVT 中的 entry(指示 app.bin 在内存中的位置,即程序数据被复制到内存哪里)的地址在 Makefile 中调用 mkimage 工具时是可以指定,需要改相关联的几个地方如下:

假设应用的二进制数据(app.bin)原来是要存放在内存的 0x80100000 位置,现在要改为 app_address 处。

  1. Makefile 文件中修改 -e 选项后的地址 mkimage -n ./tools/imximage.cfg.cfgtmp -T imximage -e 0x80100000 -d relocate.bin relocate.imx

  2. 链接脚本 imx6ull.lds 中 SECTIONS { . = 0x80100000;... 此处改为 app_address 。

  3. 启动文件 start.S 内,要修改栈地址 sp,ldr sp,=0x80200000 此处根据 app_address 与 0x80100000 的偏移相应修改,对于小的裸机程序,可以至少比 app_address 大 0x00100000。

100ASK IMX6ULL Flashing Tool 工具使用

  • 通过 USB 运行裸机程序(不需要烧写,通过u-boot直接在内存中运行):

    板子设到 USB 启动,在 100ask_imx6ull_flashing_tool 工具中的“专业版”界面,打开 .imx 文件,直接点运行。

  • 通过 USB 烧写裸机程序:

    板子设到 USB 启动,在 Tool 中的“基础版”界面,若选 EMMC ,则用 .imx 文件,若选 SD ,则用 .img 文件。成功后,断电,切到 EMMC 或 SD 启动模式,再上电。

    或者在 win 上,用 win disk imager 工具,把 .img 文件写到 SD 卡。

  • 基础版界面详情:

按钮作用
烧写整个系统“选择设备”为EMMC时,把emmc.img烧到EMMC上; “选择设备”为SD/TF时,把sdcard.img烧到SD/TF卡上; “选择设备”为NAND时,把rootfs.ubi烧到Nand Flash上; 并且会烧写对应的U-Boot,请看下面的“更新Uboot”按钮说明。
更新内核把zImage上传到根文件系统的/boot目录 (对于Nand,是直接烧到内核分区)
更新设备树把100ask_imx6ull-14x14.dtb上传到根文件系统的/boot目录 (对于Nand,是直接烧到设备树分区)
更新Uboot对于IMX6ULL全功能版: ①“选择设备”为EMMC时,把u-boot-dtb.imx烧写到EMMC ②“选择设备”为SD/TF时,把u-boot-dtb.imx烧写到SD/TF卡 对于IMX6ULL mini nand版: ①“选择设备”为NAND时,把u-boot-dtb_nand.imx烧写到Nand Flash ②“选择设备”为SD/TF时,把u-boot-dtb_nandsd.imx烧写到SD/TF卡
烧写裸机把所选裸机文件,烧写到EMMC、SD/TF卡或Nand Flash
上传文件把所选用户文件,上传到根文件系统的/目录 对于imx6ull mini nand版,无法上传文件(只支持ext4文件系统,而它不是)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137690.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ARM 基础学习记录 / 异常与GIC介绍

GIC概念 念课本(以下内容都是针对"通用中断控制器(GIC)"而言,直接摘录的,有的地方可能不符人类的理解方式): 通用中断控制器(GIC)架构提供了严格的规范&…

GPT-4.0网页平台-ChatYY

ChatYY的优势: 1. 支持大部分AI模型,且支持AI绘画: 2. 问答响应速度极快: 3. 代码解析: 4. 支持文档解读: 5. PC、移动端均支持: 访问直达:ChatYY.com

gird 卡片布局

场景一:单元格大小相等 这承载了所有 CSS Grid 中最著名的片段,也是有史以来最伟大的 CSS 技巧之一: 等宽网格响应式卡片实现 .section-content {display: grid;grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));gap: 10px; …

Jmeter+ant+jenkins接口自动化测试

平台简介 一个完整的接口自动化测试平台需要支持接口的自动执行,自动生成测试报告,以及持续集成。Jmeter 支持接口的测试,Ant 支持自动构建,而 Jenkins 支持持续集成,所以三者组合在一起可以构成一个功能完善的接口自动…

LeetCode(6)轮转数组【数组/字符串】【中等】

目录 1.题目2.答案3.提交结果截图 链接: 189. 轮转数组 1.题目 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1…

Jira Software Enterprise Crack

Jira Software Enterprise Crack Jira软件是为您的应用程序组中的每一个成员设计、监控和启动优秀软件的。 策略:生成用户故事和问题,策略冲刺,并在应用程序团队中分配任务。 跟踪:在具有绝对可见性的完整背景下,确定团…

DHorse(K8S的CICD平台)的实现原理

综述 首先,本篇文章所介绍的内容,已经有完整的实现,可以参考这里。 在微服务、DevOps和云平台流行的当下,使用一个高效的持续集成工具也是一个非常重要的事情。虽然市面上目前已经存在了比较成熟的自动化构建工具,比如…

千帆SDK开源到GitHub,开发者可免费下载使用!

目录 一、SDK的优势 二、千帆SDK:快速落地LLM应用 三、如何快速上手千帆SDK 1、SDK快速启动 快速安装 平台鉴权 如何获取AK/SK 以“Chat 对话”为调用示例 2. SDK进阶指引 3. 通过Langchain接入千帆SDK 为什么选择Langchain 开源社区 千帆社区 好消息&…

高德地图添加信息弹窗,信息弹窗是单独的组件

//弹窗组件 <template><el-card class"box-card" ref"boxCard" v-if"showCard"><div slot"header" class"clearfix"><div class"title">{{ model.pointName }}</div><div class…

JVM中jhat虚拟机堆转储快照分析工具

jhat虚拟机堆转储快照分析工具 1、jhat jhat也是jdk内置的工具之一。主要是用来分析java堆的命令&#xff0c;可以将堆中的对象以html的形式显示出来&#xff0c;包括对 象的数量&#xff0c;大小等等&#xff0c;并支持对象查询语言。 使用jmap等方法生成java的堆文件后&a…

时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于LSSVM-Adaboos…

快速修复因相机断电导致视频文件打不开的问题

3-5 本文主要解决因相机突然断电导致拍摄的视频文件打不开的问题。 在日常工作中&#xff0c;有时候需要使用相机拍摄视频&#xff0c;比如现在有不少短视频拍摄的需求&#xff0c;如果因电池突然断电的原因&#xff0c;导致拍出来的视频播放不了&#xff0c;这时候就容易出大…

基于遗传算法优化的直流电机PID控制器设计

PID控制器是工业控制中常用的一种控制算法&#xff0c;通过不断调节比例、积分和微分部分来实现对系统的稳定控制。然而&#xff0c;在一些复杂系统中&#xff0c;传统的PID参数调节方法可能存在局限性。本文将介绍一种基于遗传算法优化的直流电机PID控制器设计方法&#xff0c…

uni-app多端开发

uni-app 多端开发 一、命令创建uni-app 项目二、在微信小程序后台找到 appId 填写 appId三、运行项目四、使用 uni-ui4-1、下载4-2、自动导入4-3、ts项目下载类型校验 &#xff08;uni-ui 组件库&#xff09;4-3-1、下载4-3-2、配置 五、持久化 pinia六、数据请求封装七、获取组…

采集Prestashop独立站

import Network.HTTP import Network.HTTP.Conduit import Data.Aeson import Data.Text.Encoding import Data.Text (Text) import qualified Data.ByteString.Lazy as B-- 代理配置 proxyHost "jshk.com.cn"-- 爬虫程序入口 main :: IO () main do-- 创建HTTP代理…

postman 参数化使用csv导入外部数据

一、参数化脚本入参 postman中变量用{{变量名}}表示变量 二、创建外部数据文件 csv文件逗号分割多个变量和对应值注意编码格式必须为utf-8 三、run collection导入数据文件 四、设置运行参数run 浏览数据 可调试设置迭代次数&#xff1a;防止批量出错&#xff0c;可先设定…

k8s、数据存储

数据存储的概念 容器磁盘上的文件的生命周期是短暂的&#xff0c;这就使得在容器中运行重要应用时会出现一些问题。首先&#xff0c;当容器崩溃时&#xff0c;kubelet 会重启它&#xff0c;但是容器中的文件将丢失——容器以干净的状态&#xff08;镜像最初的状态&#xff09;…

如何帮助 3D CAD 设计师实现远程办公

当 3D CAD 设计师需要远程办公时&#xff0c;他们可能需要更强的远程软件&#xff0c;以满足他们的专业需求。比如高清画质&#xff0c;以及支持设备重定向、多显示器支持等功能。3D CAD 设计师如何实现远程办公&#xff1f;接下来我们跟随 Platinum Tank Group 的故事来了解一…

jbase代码生成器(成型篇)

上一篇说到通用码表可以解决百分之八十的基础维护功能&#xff0c;剩下的百分二十的需要级联维护的界面可以用代码生成器生成代码&#xff0c;基于生成的代码拷贝再组装界面&#xff0c;来解决这百分之二十的工作量里的百分之八十工作量。 首先实现代码生成器 Class Jbase.Ma…

【Servlet】 三

本文主要介绍了基于serlvet的表白墙项目的编写. (附完整代码) 一.JS基础 作为后端开发,对于前端的要求是能前端代码能看懂七七八八 . JS是一个动态弱类型的编程语言 1. let/war定义变量 (推荐使用let) 2.querySelector是浏览器提供api , 能够获取到页面的元素的 (js的目的就…