DAY48 121. 买卖股票的最佳时机 + 122.买卖股票的最佳时机II

121. 买卖股票的最佳时机

题目要求: 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

  • 示例 1:

  • 输入:[7,1,5,3,6,4]

  • 输出:5
    解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

思路

以前在学贪心的时候做过这个题目,把总体利润拆分成每天的价格变化。用dp的思想,dp[i]应该表示的是第i天时刻,买卖股票能够获得的最大利润。但是这个题目中股票只能买卖以此,因此可能还需要一个记录股票是否买卖过的状态。

  • 确定dp数组(dp table)以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没区分清楚。

在下面递推公式分析中,我会进一步讲解。

  • 确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

这样递推公式我们就分析完了

  • dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

  • 确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();if (len == 0) return 0;vector<vector<int>> dp(len, vector<int>(2));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; ++i) {dp[i][0] = max(dp[i-1][0], -prices[i]);dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);}return dp[len-1][1];}
};

122.买卖股票的最佳时机II

题目要求:给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入: [7,1,5,3,6,4]

  • 输出: 7
    解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

思路

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

注意这里和121. 买卖股票的最佳时机就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(2, 0));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; ++i) {dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]);}return dp[len-1][1];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137345.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

调用API接口获取淘宝商品评论:方法与实战

一、引言 淘宝作为中国最大的电商平台之一&#xff0c;提供了丰富的商品信息和用户评价数据。对于开发者、数据分析师或电商从业者来说&#xff0c;获取淘宝商品评论数据具有重要的应用价值。本文将详细介绍如何调用淘宝API接口来获取商品评论数据&#xff0c;并给出相应的代码…

【教3妹学编程-算法题】 在树上执行操作以后得到的最大分数

3妹&#xff1a;2哥&#xff0c;今日都立冬了&#xff0c; 可是天气一点都不冷。 2哥 : 立冬了&#xff0c;晚上要不要一起出去吃饺子&#xff1f;&#x1f95f; 3妹&#xff1a;好呀好呀&#xff0c;2哥请吃饺子喽 2哥 : 歪歪&#xff0c;我说的是一起出去吃&#xff0c;没说我…

以 Kubernetes 原生方式实现多集群告警

作者&#xff1a;向军涛、雷万钧 来源&#xff1a;2023 上海 KubeCon 分享 可观测性来源 在 Kubernetes 集群上&#xff0c;各个维度的可观测性数据&#xff0c;可以让我们及时了解集群上应用的状态&#xff0c;以及集群本身的状态。 Metrics 指标&#xff1a;监控对象状态的量…

C++day6作业

1.思维导图 2.编程题&#xff1a; 以下是一个简单的比喻&#xff0c;将多态概念与生活中的实际情况相联系&#xff1a; 比喻&#xff1a;动物园的讲解员和动物表演 想象一下你去了一家动物园&#xff0c;看到了许多不同种类的动物&#xff0c;如狮子、大象、猴子等。现在&am…

[autojs]用户界面GUI编程

用户界面: UI视图: View attr(name, value)attr(name)whidgravitylayout_gravitymarginmarginLeftmarginRightmarginTopmarginBottompaddingpaddingLeftpaddingRightpaddingToppaddingBottombgalphaforegroundminHeightminWidthvisibilityrotationtransformPivotXtransformPivo…

5-爬虫-打码平台、打码平台自动登录打码平台、selenium爬取京东商品信息、scrapy介绍安装、scrapy目录结构

1 打码平台 1.1 案例 2 打码平台自动登录打码平台 3 selenium爬取京东商品信息 4 scrapy介绍安装 5 scrapy目录结构 1 打码平台 # 1 登录某些网站&#xff0c;会有验证码---》想自动破解-数字字母&#xff1a;python模块&#xff1a;ddddocr-计算题&#xff0c;成语题&#xf…

MySQL MyISAM存储引擎的优缺点以及数据文件的类型

目录 优缺点 优点 1. 加锁与并发 2. 修复 3. 索引特性 1&#xff09;B-Tree 索引 2&#xff09;R-Tree 索引 3&#xff09;Full-text 索引 缺点 物理存储 1&#xff09;静态型 2&#xff09;动态型 3&#xff09;压缩型 MyISAM 存储引擎是 MySQL 中常见的存储引擎…

如何评价现在的CSGO游戏搬砖市场

如何评价现在的csgo市场&#xff1f; 其实整个搬砖市场&#xff0c;现在已经变得乌烟瘴气&#xff0c;散发着“恶臭”。我个人非常鄙视那些虚有其表&#xff0c;大小通吃的做法&#xff0c;那些甚至连搬砖数据都看不懂的人&#xff0c;也出来吹嘘着“实力强大&#xff0c;经验丰…

[模块]ES6与cjs的混合开发

[模块]ES6与cjs的混合开发 模块语言混合开发的原因Nodejs中使用ES6关于动态加载的讲解 项目的模块语言CJS 与 ESM 开发模块的使用方法普通模块引入json 文件的引入普通模块导出 CJS兼容ESMESM兼容CJS(推荐)全局变量--dirname-filename-esm库 问题Error: EPERM: operation not p…

本地生活新赛道-视频号团购怎么做?

目前有在做实体行业的商家一定要看完&#xff0c;只要你进入了这个本地生活新的赛道&#xff0c;那你的生意自然会源源不断&#xff0c;那这个赛道又是什么呢&#xff1f; 这就是十月份刚刚上线的视频号团购项目&#xff0c;开通团购之后&#xff0c;就可以通过发短视频&#…

深度学习pytorch之hub模块

pytorchhub模块里面有很多模型 https://pytorch.org/hub/ github网址&#xff1a;https://github.com/pytorch/pytorch import torch model torch.hub.load(pytorch/vision:v0.10.0, fcn_resnet50, pretrainedTrue) # or # model torch.hub.load(pytorch/vision:v0.10.0, fc…

人工智能与机器学习

人工智能和机器学习是目前科技领域最热门的话题之一&#xff0c;它们正在改变着我们的生活和工作方式。本文将从多个角度探讨人工智能和机器学习的应用和发展&#xff0c;以期为读者提供更全面的了解。 一、人工智能和机器学习的定义 人工智能&#xff08;Artificial Intelli…

Linux C语言进阶-D15递归函数和函数指针

递归函数 指一个函数的函数体中直接或间接调用了该函数本身 执行过程分为两个过程&#xff1a; 递推过程&#xff1a;从原问题出发&#xff0c;按递归公式递推从未知到已知&#xff0c;最终达到递推终止条件 回归阶段&#xff1a;按递归终止条件求出结果&#xff0c;逆向逐步…

如何提高网站安全防护?

网站的安全问题一直是很多运维人员的心头大患&#xff0c;一个网站的安全性如果出现问题&#xff0c;那么后续的一系列潜在危害都会起到连锁反应。就好像网站被挂马&#xff0c;容易遭受恶意请求呀&#xff0c;数据泄露等等都会成为杀死网站的凶手。 高防CDN不仅可以有效抵御各…

2023最新版本 FreeRTOS教程 -10-事件组(通过5种情况快速上手)

事件组对应单个事件触发或多个事件同时触发的场景 创建事件组函数 EventGroupHandle_t xEventGroupCreate( void );删除事件组函数 void vEventGroupDelete( EventGroupHandle_t xEventGroup )设置事件 在任务中使用xEventGroupSetBits() 在中断中使用xEventGroupSetBits…

【Proteus仿真】【51单片机】水质监测报警系统设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使用按键、LED、蜂鸣器、LCD1602、PCF8591 ADC、PH传感器、浑浊度传感器、DS18B20温度传感器、继电器模块等。 主要功能&#xff1a; 系统运行后&…

商业计划书PPT怎么做?这个AI软件一键在线生成,做PPT再也不求人!

商业计划书是一份重要的书面文件&#xff0c;它通常被用作商业估值、筹资和进一步扩大业务的基础。一个好的商业计划书能够让团队向投资者、潜在客户和业务合作伙伴展示其企业的价值&#xff0c;并且清楚地阐述企业的产品或服务能够如何满足市场需求。作为商业计划书的重要组成…

HuggingFace的transfomers库

pipeline from transformers import pipelineclassifier pipeline("sentiment-analysis")#自动下载模型和tokenizer classifier("We are very happy to show you the &#x1f917; Transformers library.")#[{label: POSITIVE, score: 0.9998}] #输入多…

C# OpenCvSharp 玉米粒计数

效果 项目 代码 using OpenCvSharp; using System; using System.Drawing; using System.Text; using System.Windows.Forms;namespace OpenCvSharp_Demo {public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter "*.*|*.bmp;…

【C++】STL 标准模板库 ③ ( STL 容器简介 | STL 容器区别 | STL 容器分类 | 常用的 STL 容器 )

文章目录 一、STL 容器简介1、STL 容器区别2、STL 容器分类3、常用的 STL 容器 一、STL 容器简介 1、STL 容器区别 STL 容器 用于管理 一组 数据元素 , 不同类型的 STL 容器 的区别 主要是 节点 和 节点之间的关系模型 不同 ; 容器的内存空间是否连续 : 向量 vector 的内存空间…