机器学习 - 决策树:技术全解与案例实战

目录

    • 一、引言
    • 二、决策树基础
      • 决策树模型概述
      • 构建决策树的关键概念
        • 特征选择
        • 决策树的生成
      • 决策树的剪枝
    • 三、算法研究进阶
      • 提升树和随机森林
        • 提升树(Boosted Trees)
        • 随机森林(Random Forests)
      • 进化算法与决策树
        • 决策树结构的进化
      • 多目标决策树优化
        • 应用实例:财务风险评估
    • 四、案例实战
      • 场景描述
      • 数据预处理
      • 决策树模型
      • 结果分析
      • 输出展示
      • 总结
    • 五、总结

本文深入探讨了机器学习中的决策树算法,从基础概念到高级研究进展,再到实战案例应用,全面解析了决策树的理论及其在现实世界问题中的实际效能。通过技术细节和案例实践,揭示了决策树在提供可解释预测中的独特价值。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、引言

file

决策树算法是机器学习领域的基石之一,其强大的数据分割能力让它在各种预测和分类问题中扮演着重要的角色。从它的名字便能窥见其工作原理的直观性:就像一棵树一样,从根到叶子的每一分叉都是一个决策节点,指引数据点最终归类到相应的叶节点,或者说是最终的决策结果。

在现实世界中,决策树的概念可以追溯到简单而普遍的决策过程。例如,医生在诊断病人时,会根据一系列的检查结果来逐步缩小疾病的范围,这个过程可以被视作一种决策树的实际应用。从症状到测试,每一个节点都是决策点,携带着是否进一步检查或是得出诊断的决策。

在机器学习的世界里,这种决策过程被数学化和算法化。我们不再是用肉眼观察,而是让计算机通过算法模拟这一过程。举个例子,电子邮件过滤器就是决策树应用的一个经典案例。它通过学习识别垃圾邮件和非垃圾邮件的特征,比如关键词的出现频率、发件人信誉等,电子邮件过滤器能够自动地将邮件分类为“垃圾邮件”或“正常邮件”。

在更广泛的机器学习应用领域,决策树可以处理各种各样的数据,不论是数字还是分类数据,它都能以其独到的方式进行分析。例如,在金融领域,决策树能够帮助评估和预测贷款违约的可能性;在电子商务中,它可以用来预测用户的购买行为,甚至在更复杂的领域,比如生物信息学中,决策树可以辅助从复杂的基因数据中发现疾病与特定基因之间的关联。

通过引入机器学习,我们让决策树这一概念超越了人类直觉的局限性,使它能处理远超人脑处理能力的数据量和复杂度。它们不仅能够基于现有数据做出判断,还能从数据中学习,不断优化自身的决策规则,这是决策树在现实世界中不可替代的意义。

决策树之所以在机器学习中占有一席之地,还因为它的模型可解释性强,这在需要透明决策过程的领域尤为重要。与深度学习的黑盒模型相比,决策树提供的决策路径是清晰可追踪的。每一次分支都基于数据特征的显著性进行选择,这让非专业人士也能够理解模型的决策逻辑。

在本文中,我们将深入探讨决策树的核心技术,从它的数学基础到如何优化算法以处理各类数据挑战,再到通过实际案例展示它们如何解决现实世界的问题。我们将走进决策树的世界,了解这一技术如何在机器学习的众多领域中发挥着它的重要作用。


二、决策树基础

file
决策树,作为一种符号学习方法,将复杂的决策规则转化为一系列简单的比较问题,从而对数据进行分类或回归。它们通过递归分裂训练数据集,构建一个树状的模型。

决策树模型概述

在决策树中,每个内部节点代表一个特征上的测试,每个分支代表测试的结果,而每个叶节点代表最终的决策结果。决策树的构建始于根节点,包含整个训练集,通过分裂成子节点的过程,逐渐学习数据中的规律。

想象一下,我们面前有一篮水果,目的是区分苹果和橘子。一棵决策树可能首先询问:“这个水果的颜色是红色吗?”如果答案是肯定的,它可能会将这个水果分类为苹果;否则,它会继续询问:“这个水果的质感是光滑的吗?”这样的一系列问题最终导致分类的结果,这就是决策树的工作方式。

构建决策树的关键概念

特征选择

决策树如何确定在每个节点上提出哪个问题?这就涉及到一个关键的概念——特征选择。特征选择是决定用哪个特征来分裂节点的过程,它对决策树的性能有着至关重要的影响。主要的特征选择方法包括:

  • 信息增益:度量分裂前后信息不确定性的减少,也就是说,它寻找能够最好地清理数据的特征。
  • 增益率:调整信息增益,解决偏向于选择拥有大量值的特征的问题。
  • 基尼不纯度:常用于CART算法,度量数据集的不纯度,基尼不纯度越小,数据集的纯度越高。

假设我们要从一个包含苹果和橘子的篮子中分类水果,信息增益会衡量按照颜色或按照质地分裂数据所带来的信息纯度提升。如果颜色的信息增益更高,那么颜色就是该节点的最佳分裂特征。

决策树的生成

树的生成是通过递归分裂的方式进行的。从根节点开始,使用特征选择方法选择最佳的分裂特征,创建分支,直到满足某个停止条件,比如达到了设定的最大深度,或者节点中的样本数量少于阈值。

举一个现实生活中的例子,假如一个电信公司想要预测哪些客户可能会流失。在构建决策树时,它可能会首先考虑账单金额,如果账单金额大于平均值,那么进一步考虑客户的合同期限;如果合同期限短,那么客户流失的可能性就更高。

决策树的剪枝

为了防止过拟合——即模型对训练数据过于敏感,从而无法泛化到新的数据上——决策树需要进行剪枝。剪枝可以理解为对树

进行简化的过程,包括预剪枝和后剪枝。预剪枝意味着在树完全生成之前停止树的生长;后剪枝则是在树生成之后去掉某些分支。

例如,在预测客户流失的决策树中,如果我们发现分裂后每个节点只包含极少量的客户,那么这可能是一个过拟合的信号。通过预剪枝或后剪枝,我们可以移除这些仅对训练数据有特定判断能力的规则。

决策树的基础原理既直观又深邃。它将复杂的决策过程简化为易于理解的规则,并且通过学习数据中固有的模式,适用于各种机器学习任务。


三、算法研究进阶

file
进入到算法研究的进阶阶段,我们将探讨决策树的深层次技术演进和最新研究成果,以及如何将这些先进的理念应用于解决更复杂的问题。

提升树和随机森林

决策树的强大之处不仅在于它们单独的决策能力,而且还在于它们可以组合成更强大的模型,如提升树(Boosted Trees)和随机森林(Random Forests)。

提升树(Boosted Trees)

提升树是通过结合多个弱决策树构建的,每一棵树都试图纠正前一棵树的错误。使用梯度提升(Gradient Boosting)的方法可以系统地将新模型添加到已经存在的模型集合中,从而逐步提升模型的准确率。

以预测房价为例,我们可能首先使用一个简单的决策树来预测价格,然后第二棵树会专注于第一棵树预测错误的部分,通过减少这些错误来提升模型的性能,直到达到一定的准确率或树的数量。

随机森林(Random Forests)

随机森林通过创建多个独立的决策树,并让它们对最终结果进行投票,来提高决策树的准确性和鲁棒性。每一棵树都是在数据集的一个随机子集上训练得到的,这种方法即提高了模型的泛化能力,也增加了结果的稳定性。

设想一个信用评分的场景,单一决策树可能会因为训练数据中的随机波动或噪声而产生过度特定的规则。而随机森林通过集成多个树的决策来平均这些波动,生成更为稳定和可靠的信用评分。

进化算法与决策树

研究人员还在探索如何使用进化算法(Evolutionary Algorithms)来优化决策树的结构和参数。进化算法模拟生物进化的过程,通过选择、交叉和变异操作来优化问题的解。

决策树结构的进化

在实践中,可能会将决策树的每一部分——分裂规则、特征选择、甚至是剪枝策略——看作是个体的基因。通过定义适应度函数来评估树的性能,进化算法会不断迭代,选择出性能最佳的树进行繁衍,从而得到更加优化的决策树结构。

例如,在电子商务推荐系统中,我们可以利用进化算法来不断进化决策树的结构,以提高推荐的准确性。不同的树结构被视为不同的“物种”,经过迭代的“自然选择”,最适应用户行为模式的决策树结构会被保留下来。

多目标决策树优化

在某些复杂的机器学习任务中,我们不仅仅想要优化单一的性能指标,如准确度,我们还可能关心模型的可解释性、速

度或是占用的内存大小。多目标优化(Multi-Objective Optimization)技术能够在这些不同的指标之间找到最佳的平衡。

应用实例:财务风险评估

在财务风险评估中,我们需要一个既准确又快速的模型来实时分析交易的风险。通过多目标优化,我们可以设计出既能快速执行又有着较高准确度的决策树模型,以适应高频交易环境的需求。

通过这一节的深入探讨,我们看到了决策树不仅仅是一个简单的分类或回归工具,而是一个可扩展的、能与其他算法相结合、并且能够适应复杂应用需求的强大机器学习方法。


四、案例实战

在本节中,我们将通过一个实战案例来展示如何使用Python和PyTorch实现决策树算法。我们将使用一个公开的银行营销数据集,目标是预测客户是否会订阅定期存款。这是一个典型的二分类问题。

场景描述

假设我们是一家银行,希望建立一个模型来预测哪些客户更有可能订阅定期存款。成功预测出这些客户可以帮助银行更精准地进行营销,提高资源利用效率。

数据预处理

在开始之前,我们需要进行数据预处理,包括加载数据、清洗数据、进行特征编码等。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score# 加载数据
data = pd.read_csv('bank.csv', sep=';')# 数据预处理
# 将分类变量转换为数值
labelencoder = LabelEncoder()
data['job'] = labelencoder.fit_transform(data['job'])
data['marital'] = labelencoder.fit_transform(data['marital'])
# ...对其他分类变量进行编码# 定义特征集和标签
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

决策树模型

下面,我们将使用DecisionTreeClassifier来训练模型,并对其进行评估。

# 创建决策树分类器实例
clf = DecisionTreeClassifier(criterion='entropy', random_state=42)# 训练模型
clf.fit(X_train, y_train)# 在测试集上进行预测
y_pred = clf.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'模型准确率: {accuracy:.2f}')

结果分析

这段代码会输出模型的准确率,作为评估其性能的指标。在现实应用中,我们还会关注模型的召回率、精确率和F1分数,以及通过混淆矩阵来进一步分析模型的性能。

在这个案例中,决策树模型可以帮助银行预测客户是否会订阅定期存款。通过准确率的高低,我们可以了解到模型在解决实际问题上的有效性。

输出展示

输出将直接显示模型在测试数据上的准确率,为银行提供了一个量化的工具来判断营销活动的潜在效果。

实际操作中,模型的输出还会进一步转换为决策支持,例如,通过模型预测的概率阈值来确定是否对某个客户进行营销活动。

总结

通过这个案例,我们展示了如何使用Python实现一个简单的决策树分类器,以及如何应用它在实际的商业场景中进行决策。这个实战案例仅是决策树应用的冰山一角,决策树的强大和灵活性使其在各种不同的领域都有广泛的应用。


五、总结

决策树算法作为机器学习领域的基石之一,其直观性和易于解释的特性为其赢得了广泛的应用。本文从决策树的基础知识出发,逐步深入到算法优化、研究进展,最终以一个实战案例来集中展示其在实际问题中的应用。

在技术的深度和复杂性不断提高的今天,决策树算法仍然保持着其独特的魅力。它能够与新兴的机器学习技术如深度学习、强化学习等相结合,创造出更为强大和适应性强的模型。例如,通过集成学习中的随机森林或提升方法,决策树的预测性能得到了显著提升,同时保留了模型的可解释性。

决策树的结构使其成为理解数据属性和做出预测决策的有力工具,尤其是在需要快速决策和解释决策过程的场景中。这对于处在法规要求高透明度决策过程的行业,如金融和医疗保健,尤为重要。

然而,决策树算法并不是没有挑战。过拟合和处理高维数据时的效率问题是其两大主要的技术难题。尽管存在这些挑战,但随着算法研究的不断深入,例如引入剪枝技术、特征选择和多目标优化等方法,我们有望设计出更为高效和鲁棒的决策树模型。

在案例实战中,我们利用Python和PyTorch展示了如何具体实现和应用决策树,这样的实操经验对于理解算法的实际效果和限制至关重要。

最后,可以预见,决策树算法将继续在人工智能的各个领域发挥其独特的价值。其简单、高效和易于解释的特点,将使其在可解释的AI(XAI)领域发挥重要作用,助力人类构建更加公正、透明和可信的机器学习系统。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137147.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

吃啥大转盘

经常跟朋友出去吃饭&#xff0c;选择太困难了所以写了个简单的转盘&#xff0c;直接copy到txt文本然后把文件后缀改成html即可。 需要换食物直接在文件中找到 list 值按照格式替换一下即可。 效果&#xff1a; 代码块&#xff1a; <html><head><meta http-…

【方法】如何取消PDF文件的“打开密码”?

我们知道&#xff0c;PDF文件可以设置“打开密码”&#xff0c;保护文件不被随意打开&#xff0c;那如果后续不需要了&#xff0c;要怎么取消“打开密码”呢&#xff1f;不清楚的小伙伴可以试试小编分享的3种方法&#xff01; 方法1&#xff1a;使用PDF编辑器 PDF编辑器不仅可…

技术分享 | Spring Boot 异常处理

Java 异常类 首先让我们简单了解或重新学习下 Java 的异常机制。 Java 内部的异常类 Throwable 包括了 Exception 和 Error 两大类&#xff0c;所有的异常类都是 Object 对象。 Error 是不可捕捉的异常&#xff0c;通俗的说就是由于 Java 内部 JVM 引起的不可预见的异常&#…

银行电子回单p图软件,建设农业邮政工商招商,易语言回执单快照截图

这次分享的还是通过易语言的画板自动绘画一个回执单的功能&#xff0c;套用的是网上一个回执单模版&#xff0c;我加了水印&#xff0c;防止被别有用心的人利用&#xff0c;然后一共我插入了5个图片资源&#xff0c;单选框选定后画板上面的图片会自动被替换为对应的图片模版&am…

星岛专栏|从Web3发展看金融与科技的融合之道

11月起&#xff0c;欧科云链与香港主流媒体星岛集团开设Web3.0安全技术专栏&#xff0c;该专栏主要面向香港从业者、交易机构、监管机构输出专业性的安全合规建议&#xff0c;旨在促进香港Web3.0行业向安全与合规发展。 出品&#xff5c;欧科云链研究院 自2016年首届香港金融…

降维·预测·救命:PCA、随机森林与乳腺癌

一、引言 乳腺癌作为女性健康领域的一大挑战&#xff0c;对全球范围内的女性健康产生了深远影响。据世界卫生组织&#xff08;WHO&#xff09;统计&#xff0c;乳腺癌已成为全球女性恶性肿瘤发病率的最高者&#xff0c;且呈现逐年上升的趋势。在中国&#xff0c;乳腺癌也是女性…

k8s存储卷 PV和PVC

目录 emptyDir存储卷 hostPath存储卷 nfs共享存储卷 PVC 和 PV 生命周期 一个PV从创建到销毁的具体流程如下&#xff1a; 静态pvc 动态pvc 3、定义PVC 4、测试访问 搭建 StorageClass NFS&#xff0c;实现 NFS 的动态 PV 创建 1、在stor01节点上安装nfs&#xff0…

电商大促演变:拼多多百亿补贴的消费升级体验

出品| 大力财经 文 | 魏力 拼多多已经够便宜了&#xff0c;双十一还能怎么玩&#xff1f;作为一个曾经被认为是深耕五环外消费者的电商平台&#xff0c;这几年拼多多从五环外杀到市中心&#xff0c;现在的国人&#xff0c;不管是中产&#xff0c;还是职场小白&#xff0c;人人…

混沌系统在图像加密中的应用(小波混沌神经网络)

混沌系统在图像加密中的应用&#xff08;小波混沌神经网络&#xff09; 前言一、小波混沌神经网络模型二、拓展三、python代码 前言 小波混沌神经网络是一种神经网络模型&#xff0c;结合了小波变换和混沌理论&#xff0c;用于信号处理、分类和预测。该模型基于多层前向神经网…

VINS-Mono-后端优化 (三:视觉雅可比推导)

用逆深度是因为这样可以在优化中从优化3个变量降低到1个&#xff0c;降低优化的维度加快求解速度 用逆深度是因为当距离很远的时候&#xff0c; 1 x \frac{1}{x} x1​ x x x 就会无穷大&#xff0c;而3D点很近的情况也一般不会有&#xff0c;这也是为了数值稳定性 用逆深度的…

C语言求解:有n个人围成一圈,顺序排号。从第一个人开始报数(从1到3报数),凡报到3的人退出圈子,问最后留下的是原来第几号的那位(约瑟夫问题)

完整代码&#xff1a; /* 有n个人围成一圈&#xff0c;顺序排号。从第一个人开始报数&#xff08;从1到3报数&#xff09;&#xff0c;凡报到3的人 退出圈子&#xff0c;问最后留下的是原来第几号的那位*/ #include<stdio.h>//约瑟夫问题 //递推关系f(n)(f(n-1)2)\mod n…

(动手学习深度学习)第13章 计算机视觉---图像增广与微调

13.1 图像增广 总结 数据增广通过变形数据来获取多样性从而使得模型泛化性能更好常见图片增广包裹翻转、切割、变色。 图像增广代码实现

线性代数 | 矩阵运算 加减 数乘 矩阵的幂运算

文章目录 1 矩阵加减和数乘2 矩阵与矩阵的乘法2.1 相乘条件&#xff1a;看中间&#xff0c;取两头2.2 相乘计算方法 3 矩阵的幂3.1 观察归纳法3.2 邻项相消法3.3 化为对角 4 判断是否可逆&#xff08;证明题或者要求求出逆矩阵&#xff09;4.1 直接观察4.2 由定义式推得4.2.1 待…

包教包会:Mysql主从复制搭建

笑小枫的专属目录 一、无聊的理论知识1. 主从复制原理2. 主从复制的工作过程3. MySQL四种同步方式 二、docker下安装、启动mysql1. 安装主库2. 安装从库 三、配置Master(主)四、配置Slave(从)五、链接Master(主)和Slave(从)六、主从复制排错1. 错误&#xff1a;error connectin…

win10 下 ros + Qt 工程CMakeLists.txt

win10 下 ros Qt 工程CMakeLists.txt 系统&#xff1a;win10 ros: melodic Qt: 5.12.12 源码目录: D:\workspace\catkin_qt 示例代码 https://github.com/ncnynl/ros-qt.git 由于示例代码是Qt4 &#xff0c;目前我是用QT5,所以CMakeLists.txt 修改如下 CMakeLists.txt #####…

asp.net core weapi 结合identity完成登录注册

1.安装所需要的nuget包 <PackageReference Include"Microsoft.AspNetCore.Identity.EntityFrameworkCore" Version"6.0.24" /><PackageReference Include"Microsoft.EntityFrameworkCore" Version"6.0.24" /><PackageR…

算法--数据结构

这里写目录标题 本节内容链表与邻接表链表主要思想链表操作初始化在head结点后面插入普通插入删除操作 例子 双链表&#xff08;双向循环链表&#xff09;主要思想操作初始化双向插入删除第k个点 邻接表主要思想 栈和队列栈主要思想主要操作 队列主要思想操作 单调栈与单调队列…

通用工作站设计方案 :807-ORI-S3R500 -多路PCIe3.0的单CPU通用工作站

ORI-S3R500 -多路PCIe3.0的单CPU通用工作站 (研华工业计算机IPC-610&#xff0c;IPC940 升级款) 一、机箱功能和技术指标&#xff1a; 系统 系统型号 ORI-SR500 主板支持 EEB(12*13)/CEB(12*10.5)/ATX(12*9.6)/Mi cro ATX 前置硬盘 最大支持2个3.5寸1个2.5寸SATA …

驱动基石之_tasklet中断下半部_工作队列_中断线程化处理

tasklet中断下半部 linux的中断分为两个部分&#xff1a; 1.中断上半部&#xff1a;在中断上半部期间&#xff0c;不允许被其他中断打断&#xff0c;直到中断上半部的服务函数执行完。 2.中断下半部&#xff1a;中断下半部&#xff0c;在执行中断下半部服务函数的期间&#xf…

10 个适用于 Windows 的最佳 PDF 编辑器,用于轻松编辑 PDF 文件

PDF 是当今最流行的文件格式之一。Adobe 于 1993 年开发了 PDF 文件格式。PDF&#xff08;便携式文档格式&#xff09;主要用于存储复杂的文本文档和电子书。PDF 文件包含固定的布局属性&#xff0c;并且可以存储大量文本和图形。PDF 文件格式主要用于分发大型文档。 使用 PDF…