卡尔曼滤波EKF

目录

一、概述

二、卡尔曼滤波的5个公式

三、应用案例:汽车运动

四、应用案例:温度估计

五、总结


一、概述

        初学者对于卡尔曼滤波5个公式有点懵,本文先接地气地介绍5个公式,然后举两个常用例子加强理解,同时附有Matlab代码。卡尔曼滤波在大学课程《现代控制理论》当中有涉及详细讲解。卡尔曼滤波使用条件有:

  • 1、线性系统;
  • 2、系统中噪声(不确定性)服从高斯分布。下文中的方差、误差、偏差、协方差都指不确定性的意思。误差 = 偏差;方差 = 偏差 ²。

        在无人驾驶导航定位当中,需要多传感器对汽车位姿进行检测 ;在多传感器融合方面,使用卡尔曼滤波理论较多。对预测公式新的理解:第一个公式求解的是状态变量的期望值。第二个公式求解的是状态变量的方差。

二、卡尔曼滤波的5个公式

以下内容有手写word,都是原创哈。

三、应用案例:汽车运动

完整的matlab代码:

clear all;
close all;
clc;
Z = (1:100); %观测值
noise = randn(1,100);%1行100列高斯白噪声
Z = Z + noise;X = [0;0];%状态值
P = [1 0; 0 1];%状态协方差矩阵
F = [1 1; 0 1];%状态转移矩阵
Q = [0.0001, 0; 0 0.0001];%状态转移协方差矩阵
H = [1 0];%观测矩阵
R = 1;%观测噪声方差figure;
%hold on;
speed = [];
distance = [];
for i =1:100%% 预测X_ = F*X;P_ = F*P*F' + Q;%% 更新K = P_*H'/(H*P_*H' + R);X = X_ + K*(Z(i) - H*X_);P = (eye(2) - K*H)*P_;speed(i) = X(2);distance(i) = X(1);%%plot(X(1), X(2));
end
plot(distance, speed);

四、应用案例:温度估计

五、总结

        在线性高斯系统中,卡尔曼滤波器构成了该系统中的最大后验概率估计。而且,由于高斯分布经过线性变换后仍服从高斯分布,所以整个过程中我们没有进行任何的近似。可以说,卡尔曼滤波器构成了线性系统的最优无偏估计

       SLAM 中的运动方程和观测方程通常是非线性函数,尤其是视觉 SLAM 中的相机模型,需要使用相机内参模型以及李代数表示的位姿,更不可能是一个线性系统。一个高斯分布,经过非线性变换后,往往不再是高斯分布,所以在非线性系统中,我们必须取一定的近似,将一个非高斯的分布近似成一个高斯分布。我们希望把卡尔曼滤波器的结果拓展到非线性系统中来,称为扩展卡尔曼滤波器(Ex-tended Kalman Filter,EKF)。通常的做法是,在某个点附近考虑运动方程以及观测方程的一阶泰勒展开,只保留一阶项,即线性的部分,然后按照线性系统进行推导。

EKF的局限性:

  • 1. 首先,滤波器方法在一定程度上假设了马尔可夫性,也就是 k 时刻的状态只与 k −1时刻相关,而与 k − 1 之前的状态和观测都无关(或者和前几个有限时间的状态相关)。这有点像是在视觉里程计中,只考虑相邻两帧关系一样。如果当前帧确实与很久之前的数据有关(例如回环),那么滤波器就会难以处理这种情况。而非线性优化方法则倾向于使用所有的历史数据。它不光考虑邻近时刻的特征点与轨迹关系,更会把考虑很久之前的状态也考虑进来,称为全体时间上的 SLAM(Full-SLAM)。在这种意义下,非线性优化方法使用了更多信息,当然也需要更多的计算。
  • 2.与第六章介绍的优化方法相比,EKF 滤波器仅在 k−1时刻相机位姿处做了一次线性化,然后就直接根据这次线性化结果,把后验概率给算了出来。这相当于在说,我们认为该点处的线性化近似,在后验概率处仍然是有效的。而实际上,当我们离开工作点较远的时候,一阶泰勒展开并不一定能够近似整个函数,这取决于运动模型和观测模型的非线性情况。如果它们有强烈的非线性,那线性近似就只在很小范围内成立,不能认为在很远的地方仍能用线性来近似。这就是 EKF 的非线性误差,是它的主要问题所在。在优化问题中,尽管我们也做一阶(最速下降)或二阶(G-N 或 L-M)的近似,但每迭代一次,状态估计发生改变之后,我们会重新对新的估计点做泰勒展开,而不像EKF 那样只在固定点上做一次泰勒展开。这就导致优化方法适用范围更广,则在状态变化较大时亦能适用。
  • 3.从程序实现上来说,EKF 需要存储状态量的均值和方差,并对它们进行维护和更新。如果把路标也放进状态的话,由于视觉 SLAM 中路标数量很大,这个存储量是相当可观的,且与状态量呈平方增长(因为要存储协方差矩阵)。因此,EKF SLAM 普遍认为不可适用于大型场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/136651.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云服务器密码在哪查看?如何设置修改初始密码?

阿里云服务器创建后没有默认初始密码,需要用户通过重置实例密码的方式来设置新的密码,阿里云服务器网aliyunfuwuqi.com分享阿里云服务器ECS重置实例密码的详细操作流程: 阿里云服务器重置密码方法 1、登录到阿里云服务器管理控制台 2、左侧…

STM32-EXTI中断

EXTI简介 EXTI(Extern Interrupt)外部中断 EXTI可以监测指定GPIO口的电平信号,当其指定的GPIO口产生电平变化时,EXTI将立即向NVIC发出中断申请,经过NVIC裁决后即可中断CPU主程序,使CPU执行EXTI对应的中断程…

【Leetcode】202. 两数之和

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回…

判断sparse matrix是否是对称矩阵

参考: https://stackoverflow.com/questions/48798893/error-in-checking-symmetric-sparse-matrix import scipy.sparse as sp import numpy as np np.random.seed(1)a sp.random(5, 5, density0.5)a结果如下 sym_err a - a.T sym_check_res np.all(np.abs(s…

制作一个用户登录界面

Flask-WTF扩展使用Python类来表示web表单。表单类只是将表单的字段定义为类变量。 再次考虑到分离的问题,我将使用一个新的app/forms.py模块来存储我的web表单类。首先,让我们定义一个用户登录表单,它要求用户输入用户名和密码。表单还将包括…

Vue3 + Vite + Ts + Router搭建项目

1、新建文件夹 从新建的文件夹cmd进入终端 2、安装vite—依据vite创建vue3项目 2.1、运行 npm init vitelatest2.2.1、输入项目名称 2.2.2、选择vue 2.2.3、选择TypeScript语言 3、安装依赖项 3.1、进入刚才创建的文件夹 cd vite-project 3.2、查看镜像 #查看当前源 npm con…

mac M2 pytorch_geometric安装

我目前的环境是mac M2,我在base环境中安装了pytorch_geometric,仅仅做测试用的,不做真正跑代码的测试 首先我的base环境的设置如下: pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.…

创建多层级行索引,创建多层级行索引的DataFrameMultiIndex.from_product()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 创建多层级行索引, 创建多层级行索引的DataFrame MultiIndex.from_product() [太阳]选择题 使用pd.MultiIndex.from_product(),下列输出正确的是: import pandas as pd…

【React入门实战】实现Todo代办

文章目录 效果功能-状态管理相关接口定义相关方法定义 UIinput输入框:回车添加todo标题列表列表项Main 总体代码 非常简单入门的react-todo练习,代码写的很小白。 效果 技术栈:react-typeScript 数据分为代办Todo和已办完Done,可…

Lazarus安装和入门资料

azarus-2.2.6-fpc-3.2.2-win64 下载地址 Lazarus 基础教程 - Lazarus Tutorials for Beginners Lazarus Tutorial #1 - Learning programming_哔哩哔哩_bilibili https://www.devstructor.com/index.php?pagetutorials Lazarus是一款开源免费的object pascal语言RAD IDE&…

全志T507-H技术帖 | 去掉IO扩展芯片后保留扩展引脚功能的实现方法

飞凌嵌入式推出的OKT507-C作为一款广受欢迎的开发板拥有丰富的功能接口,而实际上OKT507-C开发板的CPU引脚资源是比较紧缺的,那么它究竟是如何提供如此丰富的接口资源的呢?答案就是IO扩展芯片——TCA6424A。 这是一个24 位 I2C 和系统管理总线…

BSP-STM32移植FreeRTOS

在stm32裸机工程中的Middlewares目录添加freeRtos源码 在裸机工程中的main中调用freertos接口

python+pytorch人脸表情识别

概述 基于深度学习的人脸表情识别,数据集采用公开数据集fer2013,可直接运行,效果良好,可根据需求修改训练代码,自己训练模型。 详细 一、概述 本项目以PyTorch为框架,搭建卷积神经网络模型,训…

WebGL智慧城市软件项目

WebGL开发智慧城市项目时,需要考虑多个方面,包括技术、隐私、安全和可持续性。以下是一些需要注意的关键问题,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1.隐私和数据安全…

[100天算法】-定长子串中元音的最大数目(day 67)

题目描述 给你字符串 s 和整数 k 。请返回字符串 s 中长度为 k 的单个子字符串中可能包含的最大元音字母数。英文中的 元音字母 为(a, e, i, o, u)。示例 1:输入:s "abciiidef", k 3 输出:3 解释&#xf…

Java 设计模式——解释器模式

目录 1.概述2.结构3.案例实现3.1.抽象表达式类3.2.终结表达式3.3.非终结表达式3.4.环境类3.5.测试 4.优缺点5.使用场景 1.概述 (1)如下图,设计一个软件用来进行加减计算。我们第一想法可能就是使用工具类,提供对应的加法和减法的…

el-table实现单选框+隐藏多选框+回显

0 效果 1 单选框 2 隐藏多选框 3 回显 回显数据要在el-table中添加两个属性

Django文件配置、request对象、连接MySQL、ORM

文章目录 Django静态文件及相关配置静态文件前言静态文件相关配置 form表单request对象request请求结果GET请求POST请求 pycharm连接数据库Django连接MySQLDjango ORM简介 Django静态文件及相关配置 在此篇博客我将以一个用户登录页面来引入相关知识 首先我们先编写一个html页面…

【JavaEESpring】Spring Web MVC⼊⻔

Spring Web MVC 1. 什么是 Spring Web MVC1.1 什么是 MVC ?1.2 是什么 Spring MVC? 2. 学习 Spring MVC2.1 建立连接2.2 请求2.3 响应 3. 相关代码链接 1. 什么是 Spring Web MVC 官⽅对于 Spring MVC 的描述是这样的: 1.1 什么是 MVC ? MVC 是 Model View C…

Java算法(六):模拟评委打分案例 方法封装抽离实现 程序的节流处理

Java算法(六) 评委打分 需求: 在编程竞赛中,有 6 个评委为参赛选手打分,分数为 0 - 100 的整数分。 选手的最后得分为:去掉一个最高分和一个最低分后 的 4个评委的平均值。 注意程序的节流 package c…