简述SVM

概述

SVM,即支持向量机(Support Vector Machine),是一种常见的监督学习算法,用于分类和回归问题。它是一种基于统计学习理论和结构风险最小化原则的机器学习方法。

SVM的主要思想是在特征空间中找到一个最优的超平面,将不同类别的样本点分隔开来。这个超平面可以被视为一个决策边界,用于对新的样本进行分类。SVM的目标是找到具有最大间隔(下图中margin的一半)的超平面,以实现更好的泛化性能。

                                

超平面公式怎么推导

假设x0为超平面上的一点,w为超平面的法向量,对于超平面上任意的一点x都存在

                                                        w·(x-x0) = w·x - w·x0 = 0

令-w·x0 = b,则变为

                                                                w·x + b = 0

函数距离和几何距离

在超平面w·x + b = 0确定的情况下,|w·x + b|可以相对地表示点x距离超平面的远近,对于二分类问题,如果w·x + b > 0,则x的类别被判定为1,否则判定为-1。如果y(w·x + b) > 0,则x的分类正确,并且y(w·x + b)的值越大,分类结果的确信度越大。

所以样本点(xi,yi)与超平面(w,b)之间的函数距离定义为d = yi(w·xi + b)

但是该定义存在问题,即w和b同时缩放k倍后,超平面没有变化(比如w·x + b = 0和2w·x + 2b = 0是同一个超平面),但是函数距离却变化了,于是我们需要求几何距离。

几何距离可以通过面与面的距离公式来算,因为离超平面最近的样本点其实可以看作是处在一个和超平面平行的面上,所以我们要求的其实是面w·x + b = 1和面w·x + b = 0的距离,由距离公式可得d = 1/||w||。

于是我们得到

\left\{\begin{matrix}max \frac{1}{||w||} & \\s.t. y_{i}(w^{T}x_{i} + b) - 1 >= 0,i = 1,2,...,n & \end{matrix}\right.

拉格朗日乘子法

再进行下一步之前,我们先来了解一下拉格朗日乘子法。

拉格朗日乘子法是一种在最优化的问题中寻找多元函数在其变量受到一个或多个条件的约束时的求局部极值的方法。这种方法可以将一个有n个变量和k个约束条件的最优化问题转换为一个解有n + k个变量的方程组的解的问题。

举个例子:求双曲线xy = 3上离原点最近的点。

首先根据问题得出min f(x,y) = x^2 + y^2        s.t. xy = 3

如下图

                                        

可以看出,xy = 3和f(x,y) = x^2 + y^2的曲线簇的切点,就是我们要求的距离原点最近的点。

又有如果两个曲线相切,那么它们的切线相同,即法向量是相互平行的,于是由▽f//▽g可得▽f = λ*▽g。

这时,就将原有的约束优化问题转化为了一种对偶的无约束优化问题

原问题:

对偶问题:

min f(x,y) = x2 + y2

s.t.  xy = 3

由▽f = λ*▽g得:

  fx = λ*gx        (1)

  xy = 3

约束优化问题

无约束方程组问题

接着对上面的(1)式分别对x和y求偏导,得到2x = λ*y,        2y = λ*x,        xy = 3

通过求解方程得λ = ±2,当λ = 2时,x = sqrt(3),y = sqrt(3)或者x = sqrt(3),y = sqrt(3);当λ = -2时无解。

从等式约束到非等式约束

现在回到之前的问题,我们发现,在上面的例子中,约束条件是一个等式,而在我们的问题中约束条件s.t. yi(w·xi + b) - 1 >= 0,i=1,2,...,n是一个不等式,那么非等式约束又该怎么处理呢?

下图展示了拉格朗日乘子法的几何含义:红色曲线表示等式约束g(x) = 0,红色曲线围成的曲面内表示非等式约束g(x) <= 0

                        

非等式约束g(x) <= 0的情形中,最优点x要么出现在边界g(x) = 0上,要么出现在区域g(x) < 0中,

        对于g(x) < 0的情况,因为▽f(x)方向向里,因此约束条件g(x) <= 0不起作用,我们只需要通过条件▽f(x) = 0求得可能的极值即可

        对于g(x) = 0的情况,类似于之前提到的等式约束,但是▽f(x)的方向和▽g(x)的方向必须相反,即存在常数λ > 0使得▽f(x) + λ*▽g(x) = 0

当最优值落在g(x) < 0区域时,约束条件g(x) <= 0不起作用,因此我们令约束条件的乘子λ = 0,当最优值落在g(x) = 0边界上时,λg(x)自然等于0。综合这两种情况,可以推出λg(x) = 0。

因此,拉格朗日乘子法可以写成如下的等价形式,括号中的条件也叫做KKT条件。

L(x,λ) = f(x) + λ*g(x)

\left\{\begin{matrix}g(x) <= 0 \\ \lambda >= 0 \\ \lambda *g(x) = 0 \end{matrix}\right.

从原函数到对偶问题

接着考虑之前得到的目标函数

\left\{\begin{matrix}max \frac{1}{||w||} & \\s.t. y_{i}(w^{T}x_{i} + b) - 1 >= 0,i = 1,2,...,n & \end{matrix}\right.

由于求\frac{1}{||w||}的最大值相当于求\frac{1}{2}\left \| w \right \|^{2}的最小值,所以上述目标函数等价于

\left\{\begin{matrix}min \frac{1}{2}\left \| w \right \|^{2} & \\s.t. y_{i}(w^{T}x_{i} + b) - 1 >= 0,i = 1,2,...,n & \end{matrix}\right.

因为现在的目标函数是二次的,约束条件是线性的,所以它是一个凸二次规划问题(之所以等价于\frac{1}{2}\left \| w \right \|^{2}而不是等价于\left \| w \right \|就是为了将它转化为一个凸二次规划问题)

此外,由于这个问题的特殊结构,还可以通过拉格朗日对偶性变换到对偶变量的优化问题,即通过求解与原问题等价的对偶问题得到原始问题的最优解,这就是线性可分条件下支持向量机的对偶算法,这样做的优点在于:一者对偶问题往往更容易求解;二者可以自然的引入核函数,进而推广到非线性分类问题。

那什么是拉格朗日对偶性呢?简单来讲,通过给每一个约束条件加上一个拉格朗日乘子α,定义拉格朗日函数如下

                

然后令

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        

容易验证,当某个约束条件不满足时,例如y_{i}(w^{T}x_{i} + b) < 1,那么显然有\theta (x) = \infty(只要令\alpha _{i} = \infty即可)。而当所有约束条件都满足时,则最优值为​​​​​​​\theta (x) = \frac{1}{2}\left \| w \right \|^{2},亦即最初要最小化的量。

因此,在要求约束条件得到满足的情况下最小化​​​​​​​\frac{1}{2}\left \| w \right \|^{2},实际上等价于直接最小化​​​​​​​\theta (x)(当然,这里也有约束条件,就是≥0,i=1,…,n),因为如果约束条件没有得到满足,​​​​​​​\theta (x)会等于无穷大,自然不会是我们所要求的最小值。

        具体写出来,目标函数变成了:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

这里用p^{*}表示这个问题的最优值,且和最初的问题是等价的。如果直接求解,那么一上来便得面对w和b两个参数,而\alpha _{i}又是不等式约束,这个求解过程不好做。不妨把最小和最大的位置交换一下,变成:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

交换以后的新问题是原始问题的对偶问题,这个新问题的最优值用d^{*}来表示。而且有d^{*}p^{*},在满足某些条件的情况下(这个条件指的是强对偶,Slater条件是强对偶的充分条件),这两者相等,即d^{*}=p^{*},这个时候就可以通过求解对偶问题来间接地求解原始问题。

        换言之,之所以从minmax的原始问题p^{*},转化为maxmin的对偶问题d^{*},一者因为d^{*}p^{*}的近似解,二者,转化为对偶问题后,更容易求解。

        所谓Slater 条件,即指:凸优化问题,如果存在一个点x,使得所有等式约束都成立,并且所有不等式约束都严格成立(即取严格不等号,而非等号),则满足Slater 条件。对于此处,Slater条件成立,所以d^{*}p^{*}可以取等号,即d^{*}=p^{*},所以我们对对偶问题的求解等价于对原问题的求解。

下面可以先求L 对w、b的极小,再求L 对的极大。

对偶问题的求解

先让拉格朗日函数分别对w和b求偏导

将以上结果代入

求对\alpha的极大,即是关于对偶问题的最优化问题。经过上面第一个步骤的求w和b,得到的拉格朗日函数式子已经没有了变量w,b,只有\alpha。从上面的式子得到:

这样,求出了\alpha _{i},根据\omega = \sum_{i=1}^{m}\alpha _{i}y^{i}x^{i},即可求出w,然后通过,即可求出b,最终得出分离超平面和分类决策函数。

在求得L(w, b, a) 关于 w 和 b 最小化,以及对\alpha的极大之后,最后一步则可以利用SMO算法求解对偶问题中的拉格朗日乘子\alpha​​​​​​​。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/136599.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux rsyslog安装配置

syslog是Linux系统默认的日志守护进程。默认的syslog配置文件是/etc/rsyslog.conf文件。syslog守护进程是可配置的,它允许人们为每一种类型的系统信息精确地指定一个存放地点。syslog使用UDP 514/TCP 514端口。 1.环境信息 环境信息 HostnameIpAddressOS versionModuleNoterh…

【Shell脚本8】Shell printf 命令

Shell printf 命令 printf 命令模仿 C 程序库&#xff08;library&#xff09;里的 printf() 程序。 printf 由 POSIX 标准所定义&#xff0c;因此使用 printf 的脚本比使用 echo 移植性好。 printf 使用引用文本或空格分隔的参数&#xff0c;外面可以在 printf 中使用格式化…

Elasticsearch 集群状态详解

cluster state 返回结果详解 GET /_cluster/statehttps://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html详细信息如下&#xff1a; {"cluster_name": "business-log","cluster_uuid": "ArYy-qmCTbCQTDUI8o…

conda清华源安装cuda12.1的pytorch

使用pytorch官方提供的conda command奇慢无比&#xff0c;根本装不下来&#xff08;科学的情况下也这样&#xff09; 配置一下清华源使用清华源装就好了 清华源&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ 配置方法&#xff1a;conda config --…

strtok函数详解:字符串【分割】的利器

目录 一&#xff0c;strtok函数简介 二&#xff0c;strtok函数的用法 三&#xff0c;strtok函数的注意事项 一&#xff0c;strtok函数简介 strtok函数可以帮助我们将一个字符串按照指定的分隔符进行分割&#xff0c;从而得到我们想要的子字符串。 &#x1f342;函数头文件&am…

腾讯待办是不是停了?怎么用其它提醒软件查看导出的ics文件

腾讯待办是腾讯企业旗下的业务产品&#xff0c;其主要以微信小程序的形式使用&#xff0c;定位于待办事项和日程管理工具&#xff0c;支持罗列日程待办清单、设定定时提醒&#xff0c;帮助大家规划日常事务和进行时间管理&#xff0c;成功创建待办事项后可在对应的公众号和绑定…

Python教程之字典(Dictionary)操作详解

文章目录 前言一、创建字典二、访问字典里的值三、访问字典里的值四、删除字典元素五、字典键的特性六、字典内置函数&方法七、字典练习代码关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Py…

tqdm学习

from tqdm import tqdmepochs 10 epoch_bar tqdm(range(epochs)) count 0 for _ in epoch_bar:count count1print("count {}".format(count))print(_)每次就是一个epoch

Optional非空判断

目录 Optional 的方法 Optional实例 《天道》丁元英经典语录 所谓真经,就是能够达到寂空涅盘的究竟法门。可悟不可修。修为成佛,在求。悟为明性,在知。修行以行制性。悟道以性施行。觉者由心生律;修者以律制心,不落恶果者有信无证,住因住果,住念住心,如是生灭。不昧…

Codeforces Round 906 (Div. 2)

Codeforces Round 906 (Div. 2) A 分类讨论&#xff0c;如果数的总数大于2直接return false,否者看个数差 #include <bits/stdc.h>const int N 105; int a[N];void solve() {int n;std::cin >> n;std::unordered_map<int, int> m;for (int i 1; i < …

如何在Jetpack Compose中显示PDF?

当读取和显示 PDF 的组件缺失时该怎么办? 声明式编程可以拯救你. Jetpack Compose已经存在好几年了, 但_在某些方面它的使用仍然面临挑战_. 例如, 缺少用于查看PDF的官方组件, 而为数不多的第三方库通常也是有代价的. 在我们的应用中, 我们会遇到在许多场景中显示 PDF 的需求…

[Matlab]基于LSTM+NSGA2的风光火力发电策略优化

最近比较忙&#xff0c;好久没分享案例啦&#xff0c;今天简单分享一个滚动时域的多目标优化 一 模型介绍 1 风电 2 光伏 3 火电 4 储能 5 用电需求 等五个对象。 其中风电和光伏还有用电需求&#xff0c;用历史数据LSTM网络&#xff0c;训练一个预测模型&#xff1b;火电根据策…

2.【自动驾驶与机器人中的SLAM技术】左乘模型推导ESKF

目录 1. 证明题 证明&#xff1a;若某个高斯随机变量为零均值&#xff0c;协方差为对角线矩阵且大小相同&#xff08;各向同性&#xff09;&#xff0c;那么在乘任意旋转矩阵以后&#xff0c;其均值仍为零&#xff0c;且协方差不变&#xff1b; 2. 代码实现运动方程将F矩阵…

中级经济师各专业通过率是多少

中级经济师整体通过率在15%左右&#xff0c;其中人力资源专业通过率37%左右&#xff0c;工商管理通过率25%左右&#xff0c;金融专业通过率16%&#xff0c;其他专业通过率比较低&#xff0c;这三个专业占到总合格人数的75%左右。通过率不高&#xff0c;很大原因是考试题目综合性…

TCP网络编程

一)TCP Socket介绍: 1)TCP和UDP有着很大的不同&#xff0c;TCP想要进行网络通信的话首先需要通信双方建立连接以后然后才可以进行通信&#xff0c;TCP进行网络编程的方式和文件中的读写字节流类似&#xff0c;是以字节为单位的流进行传输 2)针对于TCP的套接字来说&#xff0c;J…

Kotlin(十) 空指针检查、字符串内嵌表达式以及函数默认值

空指针检查 我们在之前的章节里&#xff0c;有定义一个Study的类&#xff0c;它有两个函数&#xff0c;一个doHomework(),一个readBooks()。然后我们定义个doStudy函数&#xff0c;来调用它们&#xff0c;代码如下&#xff1a; fun doStudy(study: Study) {study.doHomework(…

TSINGSEE青犀智能分析网关工服识别算法,如何最大限度保障工人安全?

众所周知&#xff0c;TSINGSEE青犀智能分析网关算法繁多&#xff0c;大多数算法已经和大家讲解过了&#xff0c;今天就和大家聊一聊工服识别算法。工服识别算法一般应用于工地、化工、煤矿等场所&#xff0c;用来监督检测施工人员是否按照要求着工服&#xff0c;最大程度保障人…

面试10000次依然会问的【线程池】,你还不会?

线程池的基本概念 线程池是一种基于池化技术的线程使用方式&#xff0c;它允许我们有效地管理和复用线程&#xff0c;减少线程的创建和销毁的开销&#xff0c;从而提高系统的响应速度。在Java中&#xff0c;线程池的管理主要通过ThreadPoolExecutor类来实现。 线程池的定义与…

IntelliJ IDEA - Git Commit 后 Commit 窗口不消失解决方案

这个现象是在 2023 年版本后开始的&#xff0c;一开始以为是 Mac 系统的原因&#xff0c;后来发现原来 Windows 也这样&#xff0c;所以应该只跟 IDEA 版本有关 可以看到左侧 commit 后&#xff0c;这个侧边栏还在&#xff0c;按理讲在以前的版本是之前消失&#xff0c;这样使…

Spring Boot 整合JPA

Spring Boot 整合了JPA来访问数据库。在这个示例中&#xff0c;将创建一个简单的实体类User&#xff0c;并使用JPA来进行数据库操作。 首先&#xff0c;pom.xml <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-st…