基本描述性统计量的定义及计算
描述集中趋势的统计量
1.均值(Mean)
2.众数(Mode)
3.中位数(Median)
4.总和(Sum)
5.百分位数(Percentile Value)
描述离散程度的统计量
1.样本方差(Variance)
2.样本标准差(Std. deviation)
3.极差(Range)
4.均值标准误差(Standard Error of Mean)
描述总体分布形态的统计量
1. 偏度(Skewness):是描述取值分布形态对称性的统计量;偏度系数大于0,表示其数据分布形态有一条长尾拖在右边,称为右偏或正偏,偏度系数小于0,表示其数据分布形态有一条长尾拖在左边,称为左偏或负偏。偏度系数的绝对值越大,与正态分布相比越偏斜。
2. 峰度(Kurtosis):是描述变量取值分布形态陡缓的统计量;峰度系数等于0,表明数据分布的陡峭程度与正态分布相同。峰度系数大于0时为尖峰分布,表明数据分布的陡峭程度比正态分布大,峰度系数小于0时为平峰分布,表明数据分布的陡峭程度比正态分布小。
描述总体分布形态的统计量
来自于正态总体的偏度及峰度均近似为0,可以利用偏度和峰度的值是否接近0作为检验是否是正态分布的重要依据。