基于Kaggle训练集预测的多层人工神经网络的能源消耗的时间序列预测(Matlab代码实现)

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

本文为能源消耗的时间序列预测,在Matlab中实现。该预测采用多层人工神经网络,基于Kaggle训练集预测未来能源消耗。

📚2 运行结果

 

 

部分代码:

%% Exercise 2 - Recurrent Neural Networks

%% Initial stuff
clc
clearvars
close all

%% 1 - Hopfield Network

% Note: for this exercise, it will be interesting to check what happens if
% you add more neurons, i.e. modify T such as N is bigger.

T = [1 1; -1 -1; 1 -1]';                                                    % N x Q matrix containing Q vectors with components equal to +- 1.
                                                                            % 2-neuron network with 3 atactors
net = newhop(T);                                                            % Create a recurrent HOpfield network with stable points being the vectors from T

A1 = [0.3 0.6; -0.1 0.8; -1 0.5]';                                          % Example inputs
A2 = [-1 0.5 ; -0.5 0.1 ; -1 -1 ]';
A3 = [1 0.5  ; -0.3 -0.4 ; 0.8 -0.6]';
A4 = [0 -0.1 ; 0.1 0 ; -0.5 0.1]';
A5 = [0 0 ; 0 0.1  ; -0.1 0 ]';
A0 = [1 1; -1 -1; 1 -1]';
% Simulate a Hopfield network
% Y_1 = net([],[],Ai);                                                      % Single step iteration    

num_step = 20;                                                              % Number of steps                
Y_1 = net({num_step},{},A1);                                                % Multiple step iteration
Y_2 = net({num_step},{},A2);  
Y_3 = net({num_step},{},A3);  
Y_4 = net({num_step},{},A4);  
Y_5 = net({num_step},{},A5);

%% Now we try with 4 Neurons

T_ = [1 1 1 1; -1 -1 1 -1; 1 -1 1 1]';                                      % N x Q matrix containing Q vectors with components equal to +- 1.
                                                                            % 4-neuron network with 3 atactors
net_ = newhop(T_);                                                          % Create a recurrent HOpfield network with stable points being the vectors from T

A1_ = [0.3 0.6 0.3 0.6; -0.1 0.8 -0.1 0.8; -1 0.5 -1 0.5]';                 % Example inputs
A2_ = [-1 0.2 -1 0.2 ; -0.5 0.1  -0.5 0.1 ; -1 -1 -1 -1 ]';
A3_ = [1 0.5 1 0.5 ; -0.3 -0.4 -0.3 -0.4 ; 0.8 -0.6 0.8 -0.6]';
A4_ = [-0.5 -0.3 -0.5 -0.3 ; 0.1 0.8 0.1 0.8 ; -0.7 0.6 -0.7 0.6]';
% Simulate a Hopfield network
% Y_1 = net([],[],Ai);                                                      % Single step iteration    

num_step_ = 40;                                                             % Number of steps                
Y_1_ = net_({num_step_},{},A1_);                                            % Multiple step iteration
Y_2_ = net_({num_step_},{},A2_);  
Y_3_ = net_({num_step_},{},A3_);  
Y_4_ = net_({num_step_},{},A4_); 

%% Execute rep2.m || A script which generates n random initial points and visualises results of simulation of a 2d Hopfield network 'net'

% Note: The idea is to understand what is the relation between symmetry and
% attractors. It does not make sense that appears a fourth attractor when
% only 3 are in the Target T
close all 

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]程静,郑定成,吴继权.基于时间序列ARMA模型的广东省能源需求预测[J].能源工程,2010(01):1-5.DOI:10.16189/j.cnki.nygc.2010.01.012.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/13490.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用镜像搭建nacos集群

安装并配置 docker 1 先安装docker //1.查看操作系统的发行版号 uname -r//2.安装依赖软件包 yum install -y yum-utils device-mapper-persistent-data lvm2//3.设置yum镜像源 //官方源(慢) yum-config-manager --add-repo http://download.docker.co…

第十二章:priority_queue类

系列文章目录 文章目录 系列文章目录前言priority_queue的介绍priority_queue的使用容器适配器什么是容器适配器STL标准库中stack和queue的底层结构 总结 前言 priority_queue是容器适配器,底层封装了STL容器。 priority_queue的介绍 priority_queue文档介绍 优先…

IDEA中文UT方法执行报错问题、wps默认保存格式

wps默认保存格式、IDEA中文UT方法执行报错问题 背景 1、wps修改文件后,编码格式从UTF-8-bom变成UTF-8(notepad可以查看); 2、IDEA中文UT执行报错: 解决方案 1、语言设置中不要勾选 “Beta版。。。。” 2、cmd中执…

layui框架学习(33:流加载模块)

Layui中的流加载模块flow主要支持信息流加载和图片懒加载两部分内容,前者是指动态加载后续内容,示例的话可以参考csdn个人博客主页,鼠标移动到页面底部时自动加载更多内容,而后者是指页面显示图片时才会延迟加载图片信息。   fl…

RocketMQ 行业分享

5.0的架构发生了重大调整,添加了一层rocketmq-proxy,可以通过grpc的方式接入。 参考 https://juejin.cn/post/7199413150973984827

UE5 关于MRQ渲染器参数

最佳参数: Spatial Sample Count:使用奇数样本时临时抗锯齿会收敛 Temporal Sample Count:超过2之后,采样过大会造成TAA效果不佳 TSR:UE5最好的抗锯齿方案

AI聊天GPT三步上篮!

1、是什么? CHATGPT是OpenAI开发的基于GPT(Generative Pre-trained Transformer)架构的聊天型人工智能模型。也就是你问它答,根据网络抓去训练 2、怎么用? 清晰表达自己诉求,因为它就是一个AI助手&#…

CF1837 A-D

A题 题目链接:https://codeforces.com/problemset/problem/1837/A 基本思路: 要求计算蚂蚱到达位置 x最少需要多少次跳跃,并输出蚂蚱的跳跃方案。因为每次可以向左或向右跳跃一定距离(距离必须为整数),但是…

Web自动化测试高级定位xpath

高级定位-xpath 目录 xpath 基本概念xpath 使用场景xpath 语法与实战 xpath基本概念 XPath 是一门在 XML 文档中查找信息的语言XPath 使用路径表达式在 XML 文档中进行导航XPath 的应用非常广泛XPath 可以应用在UI自动化测试 xpath 定位场景 web自动化测试app自动化测试 …

联想拯救者笔记本切换独显直连游戏体验翻倍、火力全开“嗨”起来

最早的游戏本是由独显负责图形运算,然后直接向屏幕输出所有画面的。但独显负责所有工作,无时无刻都在耗电;撇开游戏模式下高负载的功耗不谈,即便在省电模式下功耗也比核显高得多。 英伟达发布的Optimus混合输出技术,在…

C++继承

📟作者主页:慢热的陕西人 🌴专栏链接:C 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 本博客主要内容讲解了C继承部分相关的内容 文章目录 C继承Ⅰ. 继承的概念和…

Rviz2的自定义插件开发基础知识

1. 简介 Rviz中有不同类型的插件,每个插件都必须具有相应的基本类型,才能被RViz识别 plugin typebase typeDisplayrviz_common::DisplayPanelrviz_common::PanelToolrviz_common::ToolFrames transformation libraryrviz_common::transformation::Fram…

深度探索 Elasticsearch 8.X:function_score 参数解读与实战案例分析

在 Elasticsearch 中,function_score 可以让我们在查询的同时对搜索结果进行自定义评分。 function_score 提供了一系列的参数和函数让我们可以根据需求灵活地进行设置。 近期有同学反馈,function_score 的相关参数不好理解,本文将深入探讨 f…

【数据动态填充到element表格;将带有标签的数据展示为文本格式】

一&#xff1a;数据动态填充到element表格&#xff1b; 二&#xff1a;将带有标签的数据展示为文本格式&#xff1b; 1、 <el-row><el-col :span"24"><el-tabs type"border-card"><el-tab-pane label"返回值"><el-…

基于OpenCV solvePnP函数估计头部姿势

人脸识别 文章目录 人脸识别一、姿势估计概述1、概述2、姿态估计3、在数学上表示相机运动4、姿势估计需要什么5、姿势估计算法6、Levenberg-Marquardt 优化 二、solvePnP函数1、函数原型2、参数详解 三、OpenCV源码1、源码路径 四、效果图像示例参考链接 一、姿势估计概述 1、…

Go语言学习笔记(狂神说)

Go语言学习笔记&#xff08;狂神说&#xff09; 视频地址&#xff1a;https://www.bilibili.com/video/BV1ae41157o9 1、聊聊Go语言的历史 聊聊Go语言的历史-KuangStudy-文章 2、Go语言能做什么 下面列举的是原生使用Go语言进行开发的部分项目。 Docker Docker 是一种操作…

【机器学习】西瓜书学习心得及课后习题参考答案—第4章决策树

这一章学起来较为简单&#xff0c;也比较好理解。 4.1基本流程——介绍了决策树的一个基本的流程。叶结点对应于决策结果&#xff0c;其他每个结点则对应于一个属性测试&#xff1b;每个结点包含的样本集合根据属性测试的结果被划分到子结点中&#xff1b;根结点包含样本全集&a…

Flutter 调试工具篇 | 壹 - 使用 Flutter Inspector 分析界面

theme: cyanosis 1. 前言 很多朋友可能在布局过程中、或者组件使用过程中&#xff0c;会遇到诸如颜色、尺寸、约束、定位等问题&#xff0c;可能会让你抓耳挠腮。俗话说&#xff0c;磨刀不误砍柴工&#xff0c;会使用工具是非常重要的&#xff0c;其实 Flutter 提供了强大的调试…

10分钟实现任务调度平台搭建

日常项目中&#xff0c;会有很多需要定时执行的任务&#xff0c;而这些任务的变化比较多&#xff0c;可能随时都要调整&#xff0c;那么对调度的灵活性要求比较高。我们传统的Spring Task或者Quartz&#xff0c;可以实现定时任务调度&#xff0c;但是内置在代码里&#xff0c;修…

JA64 1+2+3+...n

一、题目 求123...n_牛客题霸_牛客网 二、代码 1.使用静态成员变量构造函数 class SUM {private:static int _i;static int _ret;public:SUM(){_ret _ret _i;_i;}static int GetRet(){return _ret;} }; int SUM::_i1; int SUM::_ret0;class Solution { public:int Sum_So…