竞赛选题 深度学习手势识别算法实现 - opencv python

文章目录

  • 1 前言
  • 2 项目背景
  • 3 任务描述
  • 4 环境搭配
  • 5 项目实现
    • 5.1 准备数据
    • 5.2 构建网络
    • 5.3 开始训练
    • 5.4 模型评估
  • 6 识别效果
  • 7 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习手势识别算法实现 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 项目背景

手势识别在深度学习项目是算是比较简单的。这里为了给大家会更好的训练。其中的数据集如下:

在这里插入图片描述

3 任务描述

图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题。手势识别属于图像分类中的一个细分类问题。虽然与NLP的内容其实没有多大的关系,但是作为深度学习,DNN是一个最为简单的深度学习的算法,它是学习后序CNN、RNN、Lstm以及其他算法深度学习算法的基础。

实践环境:Python3.7,PaddlePaddle1.7.0。

用的仍然是前面多次提到的jupyter notebook,当然我们也可以用本地的pycharm。不过这里需要提醒大家,如果用的是jupyter
notebook作为试验训练,在实验中会占用很大的内存,jupyter
notebook默认路径在c盘,时间久了,我们的c盘会内存爆满,希望我们将其默认路径修改为其他的路径,网上有很多的修改方式,这里限于篇幅就不做说明了。这里需要给大家简要说明:paddlepaddle是百度
AI Studio的一个开源框架,类似于我们以前接触到的tensorflow、keras、caffe、pytorch等深度学习的框架。

4 环境搭配

首先在百度搜索paddle,选择你对应的系统(Windows、macOs、Ubuntu、Centos),然后选择你的安装方式(pip、conda、docker、源码编译),最后选择python的版本(Python2、python3),但是一般选择python3。

左后先则版本(GPU、CPU),但是后期我们用到大量的数据集,因此,我们需要下载GPU版本。,然后将该命令复制到cmd终端,点击安装,这里用到了百度的镜像,可以加快下载安装的速度。

python -m pip install paddlepaddle-gpu==1.8.3.post107 -i https://mirror.baidu.com/pypi/simple

学长电脑是window10系统,用的是pip安装方式,安装的版本是python3,本人的CUDA版本是CUDA10,因此选择的示意图以及安装命令如图所示。这里前提是我们把GPU安装需要的环境配好,网上有很多相关的文章,这里篇幅有限,就不进行展开叙述了。

在这里插入图片描述

环境配好了,接下来就该项目实现。

5 项目实现

5.1 准备数据

首先我们导入必要的第三方库。

import os
import time
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from multiprocessing import cpu_count
from paddle.fluid.dygraph import Pool2D,Conv2D
from paddle.fluid.dygraph import Linear

该数据集是学长自己收集标注的数据集(目前较小):包含0-9共就种数字手势,共2073张手势图片。

图片一共有3100100张,格式均为RGB格式文件。在本次实验中,我们选择其中的10%作为测试集,90%作为训练集。通过遍历图片,根据文件夹名称,生成label。

我按照1:9比例划分测试集和训练集,生成train_list 和 test_list,具体实现如下:

data_path = '/home/aistudio/data/data23668/Dataset' # 这里填写自己的数据集的路径,windows的默认路径是\,要将其路径改为/。
character_folders = os.listdir(data_path)
print(character_folders)
if (os.path.exists('./train_data.list')):os.remove('./train_data.list')
if (os.path.exists('./test_data.list')):os.remove('./test_data.list')
for character_folder in character_folders:with open('./train_data.list', 'a') as f_train:with open('./test_data.list', 'a') as f_test:if character_folder == '.DS_Store':continuecharacter_imgs = os.listdir(os.path.join(data_path, character_folder))count = 0for img in character_imgs:if img == '.DS_Store':continueif count % 10 == 0:f_test.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')else:f_train.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')count += 1
print('列表已生成')

其效果图如图所示:

在这里插入图片描述

这里需要简单的处理图片。需要说明一些函数:

  • data_mapper(): 读取图片,对图片进行归一化处理,返回图片和 标签。
  • data_reader(): 按照train_list和test_list批量化读取图片。
  • train_reader(): 用于训练的数据提供器,乱序、按批次提供数据
  • test_reader():用于测试的数据提供器

具体的实现如下:

def data_mapper(sample):img, label = sampleimg = Image.open(img)img = img.resize((32, 32), Image.ANTIALIAS)img = np.array(img).astype('float32')img = img.transpose((2, 0, 1))img = img / 255.0return img, label
def data_reader(data_list_path):def reader():with open(data_list_path, 'r') as f:lines = f.readlines()for line in lines:img, label = line.split('\t')yield img, int(label)return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)

5.2 构建网络

在深度学习中有一个关键的环节就是参数的配置,这些参数设置的恰当程度直接影响这我们的模型训练的效果。

因此,也有特别的一个岗位就叫调参岗,专门用来调参的,这里是通过自己积累的经验来调参数,没有一定的理论支撑,因此,这一块是最耗时间的,当然也是深度学习的瓶颈。

接下来进行参数的设置。

train_parameters = {"epoch": 1,                              #训练轮数"batch_size": 16,                        #批次大小"lr":0.002,                              #学习率"skip_steps":10,                         #每10个批次输出一次结果"save_steps": 30,                        #每10个批次保存一次结果"checkpoints":"data/"
}train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256),batch_size=32)
test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32)

前面也提到深度神经网络(Deep Neural Networks, 简称DNN)是深度学习的基础。DNN网络图如图所示:

在这里插入图片描述

首先定义一个神经网络,具体如下

class MyLeNet(fluid.dygraph.Layer):def __init__(self):super(MyLeNet, self).__init__()self.c1 = Conv2D(3, 6, 5, 1)self.s2 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)self.c3 = Conv2D(6, 16, 5, 1)self.s4 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)self.c5 = Conv2D(16, 120, 5, 1)self.f6 = Linear(120, 84, act='relu')self.f7 = Linear(84, 10, act='softmax')def forward(self, input):# print(input.shape) x = self.c1(input)# print(x.shape)x = self.s2(x)# print(x.shape)x = self.c3(x)# print(x.shape)x = self.s4(x)# print(x.shape)x = self.c5(x)# print(x.shape)x = fluid.layers.reshape(x, shape=[-1, 120])# print(x.shape)x = self.f6(x)y = self.f7(x)return y

这里需要说明的是,在forward方法中,我们在每一步都给出了打印的print()函数,就是为了方便大家如果不理解其中的步骤,可以在实验中进行打印,通过结果来帮助我们进一步理解DNN的每一步网络构成。

5.3 开始训练

接下来就是训练网络。

为了方便我观察实验中训练的结果,学长引入了matplotlib第三方库,直观的通过图来观察我们的训练结果,具体训练网络代码实现如下:

import matplotlib.pyplot as plt
Iter=0
Iters=[]
all_train_loss=[]
all_train_accs=[]
def draw_train_process(iters,train_loss,train_accs):title='training loss/training accs'plt.title(title,fontsize=24)plt.xlabel('iter',fontsize=14)plt.ylabel('loss/acc',fontsize=14)plt.plot(iters,train_loss,color='red',label='training loss')plt.plot(iters,train_accs,color='green',label='training accs')plt.legend()plt.grid()plt.show()with fluid.dygraph.guard():model = MyLeNet()  # 模型实例化model.train()  # 训练模式opt = fluid.optimizer.SGDOptimizer(learning_rate=0.01,parameter_list=model.parameters())  # 优化器选用SGD随机梯度下降,学习率为0.001.epochs_num = 250  # 迭代次数for pass_num in range(epochs_num):for batch_id, data in enumerate(train_reader()):images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)labels = np.array([x[1] for x in data]).astype('int64')labels = labels[:, np.newaxis]# print(images.shape)image = fluid.dygraph.to_variable(images)label = fluid.dygraph.to_variable(labels)predict = model(image)  # 预测# print(predict)loss = fluid.layers.cross_entropy(predict, label)avg_loss = fluid.layers.mean(loss)  # 获取loss值acc = fluid.layers.accuracy(predict, label)  # 计算精度Iter += 32Iters.append(Iter)all_train_loss.append(loss.numpy()[0])all_train_accs.append(acc.numpy()[0])if batch_id != 0 and batch_id % 50 == 0:print("train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num, batch_id, avg_loss.numpy(),                                                                                acc.numpy()))avg_loss.backward()opt.minimize(avg_loss)model.clear_gradients()fluid.save_dygraph(model.state_dict(), 'MyLeNet')  # 保存模型
draw_train_process(Iters, all_train_loss, all_train_accs)

训练过程以及结果如下:

在这里插入图片描述

前面提到强烈建议大家安装gpu版的paddle框架,因为就是在训练过程中,paddle框架会利用英伟达的GP加速,训练的速度会很快的,而CPU则特别的慢。因此,CPU的paddle框架只是在学习的时候还可以,一旦进行训练,根本不行。

可能GPU需要几秒的训练在CPU可能需要十几分钟甚至高达半个小时。其实不只是paddlepaddle框架建议大家安装GPU版本,其他的类似tensorflow、keras、caffe等框架也是建议大家按安装GPU版本。不过安装起来比较麻烦,还需要大家认真安装。

with fluid.dygraph.guard():accs = []model_dict, _ = fluid.load_dygraph('MyLeNet')model = MyLeNet()model.load_dict(model_dict)  # 加载模型参数model.eval()  # 训练模式for batch_id, data in enumerate(test_reader()):  # 测试集images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)labels = np.array([x[1] for x in data]).astype('int64')labels = labels[:, np.newaxis]image = fluid.dygraph.to_variable(images)label = fluid.dygraph.to_variable(labels)predict = model(image)acc = fluid.layers.accuracy(predict, label)accs.append(acc.numpy()[0])avg_acc = np.mean(accs)print(avg_acc)

5.4 模型评估

配置好了网络,并且进行了一定的训练,接下来就是对我们训练的模型进行评估,具体实现如下:

在这里插入图片描述

结果还可以,这里说明的是,刚开始我们的模型训练评估不可能这么好,可能存在过拟合或者欠拟合的问题,不过更常见的是过拟合,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将DNN换为更为合适的CNN神经网络模型,效果就会好很多,关于CNN的相关知识以及实验,我们下篇文章在为大家介绍。最后就是我们的模型的预测。

6 识别效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/134065.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AMEYA360:循序积累立体布局,北京君正实景展示AI-ISP

北京君正集成电路股份有限公司(下称“北京君正”)是国内较早深耕智能安防及泛视觉解决方案的芯片供应商之一,也是国内同时掌握CPU、VPU、ISP、AIE等核心技术的创新企业之一,自成立以来始终深耕行业,并持续迭代创新产品及创新方案。 在2023 CP…

Electron + VUE3 桌面应用,主进程和渲染进程通信

之前写过篇主进程和渲染进程之间的通信,这里主要是记录一下VUE版本的应用,主进程和渲染进程之间的通信。思路是一样,唯一不同的是代码。 在开发Electron应用的时候,从安全的角度来考虑,尽量不要在渲染进程中,直接调用ElectronAPI,因此我们需要预加载JS脚本,在这个脚本…

网络的地址簿:Linux DNS服务的全面指南

1 dns 1.1 dns(域名解析服务)介绍 当访问 www.baidu.com 首先查询/etc/hosts,如果没有再去查询/etc/resolv.conf,还是没有就去查询域名服务器 关于客户端: /etc/resolv.conf ##dns指向文件 nameserver 172.25.254.20测试&…

Oracle(11)Managing Tables

Managing Tables 管理表 目标: 识别存储数据的各种方法概述甲骨文数据类型区分扩展ROWID与限制ROWID勾勒出一行的结构创建常规表和临时表管理表中的存储结构重新组织、截断和删除表删除表中的列 一、基础知识 1、Oracle Built-in Data Types Oracle内置数据类型 2…

竞赛选题 深度学习手势检测与识别算法 - opencv python

文章目录 0 前言1 实现效果2 技术原理2.1 手部检测2.1.1 基于肤色空间的手势检测方法2.1.2 基于运动的手势检测方法2.1.3 基于边缘的手势检测方法2.1.4 基于模板的手势检测方法2.1.5 基于机器学习的手势检测方法 3 手部识别3.1 SSD网络3.2 数据集3.3 最终改进的网络结构 4 最后…

【ARFoundation学习笔记】平面检测

写在前面的话 本系列笔记旨在记录作者在学习Unity中的AR开发过程中需要记录的问题和知识点。难免出现纰漏,更多详细内容请阅读原文。 文章目录 平面检测属性可视化平面平面检测的开关控制显示与隐藏已检测平面 平面检测属性 AR中检测平面的原理:AR Fou…

security

Java Security 是一个用于在 Java 平台上提供安全性的框架。下面是 Java Security 的一些主要知识点: 1. 加密和解密:Java Security 提供了一组加密和解密 API,可以实现各种加密标准,如 AES、DES、RSA 等。 2. 数字签名&#xf…

socks5代理和https代理有什么不同?各自有哪些优点?

socks5代理和https代理是两种不同的代理服务,它们在实现方式、安全性和协议特点等方面存在差异。下面我们来详细了解一下这两种代理的优点。 一、socks5代理的优点 1. 速度快 socks5代理采用了TCP协议,能够有效地减少网络延迟和数据传输速度慢的问题&…

LeetCode 2586. 统计范围内的元音字符串数:模拟

【LetMeFly】2586.统计范围内的元音字符串数:模拟 力扣题目链接:https://leetcode.cn/problems/count-the-number-of-vowel-strings-in-range/ 给你一个下标从 0 开始的字符串数组 words 和两个整数:left 和 right 。 如果字符串以元音字母…

请求服务器数据API

请求服务器数据API 一、简介二、wx.request(object)三、HTTP域名的服务器配置 一、简介 用来请求服务器数据发起的是HTTPS请求,同时它需要在微信公众平台配置HTTPS服务器域名,一个月可申请三次修改,否则无法使用wx.request请求服务器数据。WebSocket会话…

nn.embedding函数详解(pytorch)

提示:文章附有源码!!! 文章目录 前言一、nn.embedding函数解释二、nn.embedding函数使用方法四、模型训练与预测的权重变化探讨 前言 最近发现prompt工程(如sam模型),也有transform的detr模型等都使用了nn.Embedding函…

c语言经典算法—二分查找,冒泡,选择,插入,归并,快排,堆排

一、二分查找 1、前提条件&#xff1a;数据有序&#xff0c;随机访问&#xff1b; 2、实现&#xff1a;递归实现&#xff0c;非递归实现 3、注意事项&#xff1a; 循环退出条件:low <high,low high.说明还有一个元素&#xff0c;该元素还要与key进行比较 mid的取值&#xf…

UE5 新特性 Nanite 开启

啥也不说&#xff0c;只能说&#xff0c;真的牛&#xff0c;在自己的项目上&#xff0c;从10几20的帧数&#xff0c;直接彪到了70 适用场景&#xff1a; 大场景&#xff0c;三角面足够多 在Project Setting里面 将这几个勾未true 勾上这个&#xff0c;放入场景即可

持续持续集成部署-k8s-配置与存储-配置管理:Secret 的应用

持续持续集成部署-k8s-配置与存储-配置管理:Secret 的应用 1. 简介2. 创建 Secret3. docker-registry 的使用1. 简介 与 ConfigMap 类似,用于存储配置信息,但是主要用于存储敏感信息、需要加密的信息,Secret 可以提供数据加密、解密功能。 在创建 Secret 时,要注意如果要…

【电子通识】USB Logo的标识含义

USB 图标的设计灵感是来自罗马神话中的海神尼普顿(Neptune)&#xff08;也是海王星的名字&#xff09;的武器「三叉戟」&#xff0c;一支强有力的三齿鱼叉。不过&#xff0c;为了避免鱼叉形状的设计暗示人们拿着自己的USB 存储设备到处乱插&#xff08;叉&#xff09;。设计师对…

使用vscode + lldb + codelldb调试可执行程序

主要是lauch.json的编写 // filename: lauch.json {// Use IntelliSense to learn about possible attributes.// Hover to view descriptions of existing attributes.// For more information, visit: https://go.microsoft.com/fwlink/?linkid830387"version": …

机器学习模型,超级全面总结!

机器学习是一种通过让计算机自动从数据中学习规律和模式&#xff0c;从而完成特定任务的方法。按照模型类型&#xff0c;机器学习可以分为两大类&#xff1a;监督学习模型和无监督学习模型。 附注&#xff1a;除了以上两大类模型&#xff0c;还有半监督学习和强化学习等其他类…

Vue3响应式核心API 使用注意点

目录 1&#xff0c;和 vue2 的对比2&#xff0c;核心 API 介绍1&#xff0c;reactive 和 readonly2&#xff0c;ref3&#xff0c;监听数据watchEffectwatch 4&#xff0c;判断和转换判断转换 1&#xff0c;和 vue2 的对比 vue2 的响应式原理通过 defineProperty 实现&#xff…

Texlive安装

下载4.8G的iso文件 解压 或 装载后&#xff0c;以管理员身份运行(.bat)文件。 运行以下两句代码进行Texlive相关升级 tlmgr option repository otan tlmgr update --self --all 运行以下三行代码&#xff0c;检查是否安装成功 latex -v xelatex -v pdflatex -v 如果有异常…

安全防御——三、网络安全理论知识

安全防御 一、安全防御1、网络安全常识及术语资产网络安全网络空间&#xff08;Cyberspace&#xff09;漏洞0day1day后门exploit攻击安全策略安全机制社会工程学APT&#xff08;最新&#xff09; 2、为什么会出现网络安全问题3、什么样的网络是安全的&#xff1f; 二、威胁模型…