竞赛选题 深度学习手势检测与识别算法 - opencv python

文章目录

  • 0 前言
  • 1 实现效果
  • 2 技术原理
    • 2.1 手部检测
      • 2.1.1 基于肤色空间的手势检测方法
      • 2.1.2 基于运动的手势检测方法
      • 2.1.3 基于边缘的手势检测方法
      • 2.1.4 基于模板的手势检测方法
      • 2.1.5 基于机器学习的手势检测方法
    • 3 手部识别
      • 3.1 SSD网络
      • 3.2 数据集
      • 3.3 最终改进的网络结构
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像识别手势检测识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现效果

废话不多说,先看看学长实现的效果吧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 技术原理

2.1 手部检测

主流的手势分割方法主要分为静态手势分割和动态手势分割两大类方法。

  • 静态手势分割方法: 单张图片利用手和背景的差异进行分割,

  • 动态手势分割方法: 利用了视频帧序列的信息来分割。

2.1.1 基于肤色空间的手势检测方法

肤色是手和其他背景最明显的区分特征,手的颜色范围较统一并且有聚类性,基于肤色的分割方法还有处理速度快,对旋转、局部遮挡、姿势变换具有不变性,因此利用不同的颜色空间来进行手势分割是现在最常用的方法。

肤色分割的方法主要有以下几种:基于参数、非参数的显式肤色聚类方法。参数模型使用高斯颜色分布,非参数模型则是从训练数据中获得肤色直方图来对肤色区间进行估计。肤色聚类显式地在某个特定的颜色空间中定义了肤色的边界,广义上看是一种静态的肤色滤波器,如Khan根据检测到的脸部提出了一种自适应的肤色模型。

肤色是一种低级的特征,对计算的消耗很少,感知上均匀的颜色空间如CIELAB,CIELUV等已经被用于进行肤色检测。正交的颜色空间如,YCbCr,YCgCr,YIQ,YUV等也被用与肤色分割,如Julilian等使用YCrCb颜色空间,利用其中的CrCb分量来建立高斯模型进行分割。使用肤色分割的问题是误检率非常高,所以需要通过颜色校正,图像归一化等操作来降低外界的干扰,提高分割的准确率。

基于YCrCb颜色空间Cr, Cb范围筛选法手部检测,实现代码如下:

# 肤色检测之二: YCrCb中 140<=Cr<=175 100<=Cb<=120
img = cv2.imread(imname, cv2.IMREAD_COLOR)
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域
(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道分量图像skin2 = np.zeros(cr.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据
(x, y) = cr.shape # 获取源图像数据的长和宽# 遍历图像, 判断Cr和Br通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0
for i in  range(0, x): for j in  range(0, y):if (cr[i][j] >  140) and (cr[i][j] <  175) and (cb[i][j] >  100) and (cb[i][j] <  120):skin2[i][j] =  255else:skin2[i][j] =  0cv2.imshow(imname, img)
cv2.imshow(imname +  " Skin2 Cr+Cb", skin2)

检测效果:

在这里插入图片描述
在这里插入图片描述

2.1.2 基于运动的手势检测方法

基于运动的手势分割方法将运动的前景和静止的背景分割开,主要有背景差分法、帧间差分法、光流法等。

帧间差分选取视频流中前后相邻的帧进行差分,设定一定的阈值来区分前景和后景,从而提取目标物体。帧差法原理简单,计算方便且迅速,但是当前后景颜色相同时检测目标会不完整,静止目标则无法检测。

背景差分需要建立背景图,利用当前帧和背景图做差分,从而分离出前后景。背景差分在进行目标检测中使用较多。有基于单高斯模型,双高斯模型的背景差分,核密度估计法等。景差分能很好的提取完整的目标,但是受环境变化的影响比较大,因此需要建立稳定可靠的背景模型和有效的背景更新方法。

1, 读取摄像头
2, 背景减除
fgbg1 = cv.createBackgroundSubtractorMOG2(detectShadows=True)
fgbg2 = cv.createBackgroundSubtractorKNN(detectShadows=True)
# fgmask = fgbg1.apply(frame)
fgmask = fgbg2.apply(frame) # 两种方法
3, 将没帧图像转化为灰度图像 在高斯去噪 最后图像二值化
gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY)
blur = cv.GaussianBlur(gray, (11, 11), 0)
ret, binary = cv.threshold(blur, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4, 选取手部的 ROI 区域 绘制轮廓
gesture = dst[50:600, 400:700]
contours, heriachy = cv.findContours(gesture, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 获取轮廓本身
for i, contour in enumerate(contours): # 获取轮廓
cv.drawContours(frame, contours, i, (0, 0, 255), -1) # 绘制轮廓
print(i)

在这里插入图片描述

2.1.3 基于边缘的手势检测方法

基于边缘的手势分割方法利用边缘检测算子在图像中计算出图像的轮廓,常用来进行边缘检测的一阶算子有(Roberts算子,Prewitt算子,Sobel算子,Canny算子等),二阶算子则有(Marr-
Hildreth算子,Laplacian算子等),这些算子在图像中找到手的边缘。但是边缘检测对噪声比较敏感,因此精确度往往不高。

边缘检测代码示例:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import scipy.signal as signal     # 导入sicpy的signal模块# Laplace算子
suanzi1 = np.array([[0, 1, 0],  [1,-4, 1],[0, 1, 0]])# Laplace扩展算子
suanzi2 = np.array([[1, 1, 1],[1,-8, 1],[1, 1, 1]])# 打开图像并转化成灰度图像
image = Image.open("pika.jpg").convert("L")
image_array = np.array(image)# 利用signal的convolve计算卷积
image_suanzi1 = signal.convolve2d(image_array,suanzi1,mode="same")
image_suanzi2 = signal.convolve2d(image_array,suanzi2,mode="same")# 将卷积结果转化成0~255
image_suanzi1 = (image_suanzi1/float(image_suanzi1.max()))*255
image_suanzi2 = (image_suanzi2/float(image_suanzi2.max()))*255# 为了使看清边缘检测结果,将大于灰度平均值的灰度变成255(白色)
image_suanzi1[image_suanzi1>image_suanzi1.mean()] = 255
image_suanzi2[image_suanzi2>image_suanzi2.mean()] = 255# 显示图像
plt.subplot(2,1,1)
plt.imshow(image_array,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,3)
plt.imshow(image_suanzi1,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,4)
plt.imshow(image_suanzi2,cmap=cm.gray)
plt.axis("off")
plt.show()

2.1.4 基于模板的手势检测方法

基于模版的手势分割方法需要建立手势模版数据库,数据库记录了不同手势不同场景下的手势模版。计算某个图像块和数据库中各个手势的距离,然后使用滑动窗遍历整幅图像进行相同的计算,从而在图像正确的位置找到数据库中的最佳匹配。模版匹配对环境和噪声鲁棒,但是数据库需要涵盖各种手型、大小、位置、角度的手势,并且因为需要遍历整个图像进行相同的计算,实时性较差。

2.1.5 基于机器学习的手势检测方法

贝叶斯网络,聚类分析,高斯分类器等等也被用来做基于肤色的分割。随机森林是一种集成的分类器,易于训练并且准确率较高,被用在分割和手势识别上。建立肤色分类的模型,并且使用随机森林对像素进行分类,发现随机森林得到的分割结果比上述的方法都要准确.

3 手部识别

毫无疑问,深度学习做图像识别在准确度上拥有天然的优势,对手势的识别使用深度学习卷积网络算法效果是非常优秀的。

3.1 SSD网络

SSD网络是2016年提出的卷积神经网络,其在物体检测上取得了很好的效果。SSD网络和FCN网络一样,最终的预测结果利用了不同尺度的特征图信息,在不同尺度的特征图上进行检测,大的特征图可以检测小物体,小特征图检测大物体,使用金字塔结构的特征图,从而实现多尺度的检测。网络会对每个检测到物体的检测框进行打分,得到框中物体所属的类别,并且调整边框的比例和位置以适应对象的形状。

在这里插入图片描述

3.2 数据集

我们实验室自己采集的数据集:

数据集包含了48个手势视频,这些视频是由谷歌眼镜拍摄的,视频中以第一人称视角拍摄了室内室外的多人互动。数据集中包含4个类别的手势:自己的左右手,其他人的左右手。数据集中包含了高质量、像素级别标注的分割数据集和检测框标注数据集,视频中手不受到任何约束,包括了搭积木,下棋,猜谜等活动。

在这里插入图片描述

需要数据集的同学可以联系学长获取

3.3 最终改进的网络结构

在这里插入图片描述
在这里插入图片描述

最后整体实现效果还是不错的:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/134060.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ARFoundation学习笔记】平面检测

写在前面的话 本系列笔记旨在记录作者在学习Unity中的AR开发过程中需要记录的问题和知识点。难免出现纰漏&#xff0c;更多详细内容请阅读原文。 文章目录 平面检测属性可视化平面平面检测的开关控制显示与隐藏已检测平面 平面检测属性 AR中检测平面的原理&#xff1a;AR Fou…

socks5代理和https代理有什么不同?各自有哪些优点?

socks5代理和https代理是两种不同的代理服务&#xff0c;它们在实现方式、安全性和协议特点等方面存在差异。下面我们来详细了解一下这两种代理的优点。 一、socks5代理的优点 1. 速度快 socks5代理采用了TCP协议&#xff0c;能够有效地减少网络延迟和数据传输速度慢的问题&…

nn.embedding函数详解(pytorch)

提示&#xff1a;文章附有源码&#xff01;&#xff01;&#xff01; 文章目录 前言一、nn.embedding函数解释二、nn.embedding函数使用方法四、模型训练与预测的权重变化探讨 前言 最近发现prompt工程(如sam模型)&#xff0c;也有transform的detr模型等都使用了nn.Embedding函…

c语言经典算法—二分查找,冒泡,选择,插入,归并,快排,堆排

一、二分查找 1、前提条件&#xff1a;数据有序&#xff0c;随机访问&#xff1b; 2、实现&#xff1a;递归实现&#xff0c;非递归实现 3、注意事项&#xff1a; 循环退出条件:low <high,low high.说明还有一个元素&#xff0c;该元素还要与key进行比较 mid的取值&#xf…

UE5 新特性 Nanite 开启

啥也不说&#xff0c;只能说&#xff0c;真的牛&#xff0c;在自己的项目上&#xff0c;从10几20的帧数&#xff0c;直接彪到了70 适用场景&#xff1a; 大场景&#xff0c;三角面足够多 在Project Setting里面 将这几个勾未true 勾上这个&#xff0c;放入场景即可

【电子通识】USB Logo的标识含义

USB 图标的设计灵感是来自罗马神话中的海神尼普顿(Neptune)&#xff08;也是海王星的名字&#xff09;的武器「三叉戟」&#xff0c;一支强有力的三齿鱼叉。不过&#xff0c;为了避免鱼叉形状的设计暗示人们拿着自己的USB 存储设备到处乱插&#xff08;叉&#xff09;。设计师对…

机器学习模型,超级全面总结!

机器学习是一种通过让计算机自动从数据中学习规律和模式&#xff0c;从而完成特定任务的方法。按照模型类型&#xff0c;机器学习可以分为两大类&#xff1a;监督学习模型和无监督学习模型。 附注&#xff1a;除了以上两大类模型&#xff0c;还有半监督学习和强化学习等其他类…

Texlive安装

下载4.8G的iso文件 解压 或 装载后&#xff0c;以管理员身份运行(.bat)文件。 运行以下两句代码进行Texlive相关升级 tlmgr option repository otan tlmgr update --self --all 运行以下三行代码&#xff0c;检查是否安装成功 latex -v xelatex -v pdflatex -v 如果有异常…

基于单片机的智能扫地机设计

概要 本文主要设计一个简单的智能扫地机。该扫地机的核心控制元器件是stc89c52&#xff0c;具有编写程序简单&#xff0c;成本普遍较低&#xff0c;功能较多&#xff0c;效率特别高等优点&#xff0c;因此在市场上得到很大的应用。除此之外&#xff0c;该扫地机能够自动避开障碍…

【Java 进阶篇】JSP EL 详解

在 Java Web 开发中&#xff0c;JavaServer Pages&#xff08;JSP&#xff09;是一种强大的技术&#xff0c;用于创建动态 Web 应用程序。JSP 的一个关键方面是 Expression Language&#xff08;EL&#xff09;表达语言&#xff0c;它允许您在 JSP 页面中嵌入 Java 代码&#x…

关于卷积神经网络的多通道

多通道输入 当输入的数据包含多个通道时&#xff0c;我们需要构造一个与输入通道数相同通道数的卷积核&#xff0c;从而能够和输入数据做卷积运算。 假设输入的形状为n∗n&#xff0c;通道数为ci​&#xff0c;卷积核的形状为f∗f&#xff0c;此时&#xff0c;每一个输入通道都…

记CVE-2022-39227-Python-JWT漏洞

文章目录 前言影响版本漏洞分析Newstar2023 Week5总结 前言 在Asal1n师傅的随口一说之下&#xff0c;说newstar week5出了一道祥云杯一样的CVE&#xff0c;于是自己也是跑去看了一下&#xff0c;确实是自己不知道的一个CVE漏洞&#xff0c;于是就从这道题学习到了python-jwt库…

机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 -python 计算机竞赛

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.2 打哈欠检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#x…

在MacBook上实现免费的PDF文件编辑

之前我想对PDF文件进行简单处理&#xff08;比如删页面、添空白页、调整页面顺序&#xff09;&#xff0c;要么是开wps会员【花钱贵】&#xff0c;下载&#xff08;盗版&#xff09;Adobe Acrobat【macOS不好下载】&#xff0c;要么用福昕阅览器登陆学生账号&#xff08;学校买…

[React] React-Redux 快速入门

文章目录 1.安装 Redux Toolkit 和 React Redux2.创建 Redux Store3.为 React 提供 Redux Store​4.创建 Redux State Slice5.添加 Slice Reducers 到 Store6.在 React 组件中使用 Redux State 和 Actions​7.总结 1.安装 Redux Toolkit 和 React Redux npm install reduxjs/t…

KaiOS APN配置文件apn.json调试验证方法(无需项目全编)

1、KaiOS 的应用就类似web应用&#xff0c;结合文件夹路径webapp字面意思理解。 2、KaiOS APN配置文件源代码在apn.json&#xff0c; &#xff08;1&#xff09;apn.json可以自定义路径&#xff0c;通过配置脚本实现拷贝APN在编译时动态选择路径在机器中生效。 &#xff08;…

集合框架:List系列集合:特点、方法、遍历方式、ArrayList,LinkList的底层原理

目录 List集合 特有方法 遍历方式 1. 使用普通 for 循环&#xff1a; 2. 使用增强型 for 循环&#xff08;foreach&#xff09;&#xff1a; 3. 使用迭代器&#xff08;Iterator&#xff09;&#xff1a; 4. 使用 Java 8 的流&#xff08;Stream&#xff09;API&#xff…

Softing新版HART多路复用器现支持图尔克excom和西门子ET 200iSP等远程I/O

Softing工业自动化最近升级了用于访问配置和诊断数据的smartLink SW-HT软件&#xff0c;现在该软件可支持访问图尔克excom和西门子ET 200iSP等远程I/O。 &#xff08;smartLink SW-HT支持访问配置和诊断数据&#xff09; 越来越多的新型远程I/O选择使用以太网来替代PROFIBUS连接…

系列十一、拦截器(二)#案例演示

一、案例演示 说明&#xff1a;如下案例通过springboot的方式演示拦截器是如何使用的&#xff0c;以获取Controller中的请求参数为切入点进行演示 1.1、前置准备工作 1.1.1、pom <dependencies><!-- spring-boot --><dependency><groupId>org.spring…

分享一下怎么做小程序营销活动

小程序营销活动已经成为现代营销的必备利器&#xff0c;它能够帮助企业提高品牌知名度、促进产品销售&#xff0c;以及加强与用户的互动。然而&#xff0c;要想成功地策划和执行一个小程序营销活动&#xff0c;需要精心设计和全面规划。本文将为您介绍小程序营销活动的策划和执…