【考研数学】数学“背诵手册”(二)| 线代及概率论部分

文章目录

  • 引言
  • 二、线代
    • 施密特正交化
    • 分块矩阵
    • 转置、逆、伴随之间的运算
    • 关于秩
      • 定义
      • 性质
  • 三、概统
    • 常见分布的期望及方差


引言

这数一全部内容太多了,放在一篇文章里的话,要编辑就很困难,就把线代和概率放在这篇文章里吧。


二、线代

施密特正交化

把一组线性无关的向量组转化为一组两两正交且规范的向量组的过程,称为施密特正交化。

α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 线性无关,其正交化过程为:

(1)正交化 l e t β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ( α n , β 2 ) ( β 2 , β 2 ) β 2 − ⋯ − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 let\space \pmb{\beta_1=\alpha_1,\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1}\\ \pmb{\beta_n=\alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\beta_2}-\cdots-\pmb{\frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1}} let β1=α1,β2=α2(β1,β1)(α2,β1)β1βn=αn(β1,β1)(αn,β1)β1(β2,β2)(αn,β2)β2(βn1,βn1)(αn,βn1)βn1 则向量组 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,,βn 两两正交。
(2)规范化。各自除以各自的模即可。

分块矩阵

首先是行列式,有以下三个结论:

(1) ∣ A 1 A 2 ⋱ A n ∣ = ∣ A 1 ∣ ⋅ ∣ A 2 ∣ ⋯ ∣ A n ∣ . \begin{vmatrix} \pmb{A_1} & & & \\ & \pmb{A_2} & & \\ & & \ddots & \\ & & & \pmb{A_n}\end{vmatrix}=|\pmb{A_1}|\cdot|\pmb{A_2}|\cdots|\pmb{A_n}|. A1A2An =A1A2An∣.

(2) ∣ A C O B ∣ = ∣ A O O B ∣ = ∣ A ∣ ⋅ ∣ B ∣ . \begin{vmatrix} \pmb{A} & \pmb{C}\\ \pmb{O}& \pmb{B} \end{vmatrix}=\begin{vmatrix} \pmb{A} & \pmb{O}\\ \pmb{O}& \pmb{B} \end{vmatrix}=|\pmb{A}|\cdot|\pmb{B}|. AOCB = AOOB =AB∣.

(3)设 A , B \pmb{A,B} A,B 分别为 m , n m,n m,n 阶方阵,则有 ∣ O A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ . \begin{vmatrix} \pmb{O} & \pmb{A}\\ \pmb{B}& \pmb{O} \end{vmatrix}=(-1)^{mn}|\pmb{A}|\cdot|\pmb{B}|. OBAO =(1)mnAB∣.

然后是转置的结论: [ A B C D ] T = [ A T C T B T D T ] . \begin{bmatrix} \pmb{A} & \pmb{B}\\ \pmb{C}& \pmb{D} \end{bmatrix}^T=\begin{bmatrix} \pmb{A^T} & \pmb{C^T}\\ \pmb{B^T}& \pmb{D^T} \end{bmatrix}. [ACBD]T=[ATBTCTDT].

接着是逆矩阵的结论: [ A O O B ] − 1 = [ A − 1 O O B − 1 ] , [ O A B O ] − 1 = [ O B − 1 A − 1 O ] . \begin{bmatrix} \pmb{A} & \pmb{O}\\ \pmb{O}& \pmb{B} \end{bmatrix}^{-1}=\begin{bmatrix} \pmb{A^{-1}} & \pmb{O}\\ \pmb{O}& \pmb{B^{-1}} \end{bmatrix},\begin{bmatrix} \pmb{O} & \pmb{A}\\ \pmb{B}& \pmb{O} \end{bmatrix}^{-1}=\begin{bmatrix} \pmb{O} & \pmb{B^{-1}}\\ \pmb{A^{-1}}& \pmb{O} \end{bmatrix}. [AOOB]1=[A1OOB1],[OBAO]1=[OA1B1O].

转置、逆、伴随之间的运算

对可逆矩阵,转置、逆和伴随可以随意交换顺序,即 ( A − 1 ) T = ( A T ) − 1 , ( A ∗ ) − 1 = ( A − 1 ) ∗ , ( A ∗ ) T = ( A T ) ∗ . (\pmb{A}^{-1})^T=(\pmb{A}^{T})^{-1},(\pmb{A}^{*})^{-1}=(\pmb{A}^{-1})^{*},(\pmb{A}^{*})^T=(\pmb{A}^{T})^*. (A1)T=(AT)1,(A)1=(A1),(A)T=(AT).

关于秩

定义

矩阵的秩的定义:

A \pmb{A} A m × n m\times n m×n 矩阵,从中任取 r r r r r r 列,元素按照原有次序构成的 r r r 阶行列式,称为矩阵 A \pmb{A} A r r r 阶子式。若 矩阵 A \pmb{A} A 中至少有一个 r r r 阶子式不为零,但所有 r + 1 r+1 r+1 阶子式(可能没有)均为零,称 r r r 为矩阵 A \pmb{A} A 的秩。

向量组秩的定义:

α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 为一组向量,若其存在 r r r 个向量线性无关,且任意 r + 1 r+1 r+1 个向量(不一定有)一定线性相关,称这 r r r 个线性无关的向量构成的向量组为 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 的极大线性无关组,极大线性无关组所含向量的个数,称为向量组的秩。

性质

矩阵的秩有如下性质: r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) . [ r ( A ) + r ( B ) − n ] ≤ r ( A + B ) ≤ r ( A ) + r ( B ) . r ( A B ) ≤ min ⁡ { r ( A ) , r ( B ) } . i f A B = O , t h e n , r ( A ) + r ( B ) ≤ n . i f ∣ P ∣ , ∣ Q ∣ ≠ 0 , r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) . r ( A ∗ ) = { n r ( A ) = n 1 r ( A ) = n − 1 0 r ( A ) < n − 1 , ( n ≥ 2 ) . l e t A m × n , B m × s , t h e n , max ⁡ { r ( A ) , r ( A ) } ≤ r ( A ⋮ B ) ≤ r ( A ) + r ( B ) . α , β ≠ 0 , r ( A ) = 1 ⟺ A = α β T . r ( A O O B ) = r ( A ) + r ( A ) . r(\pmb{A})=r(\pmb{A}^T)=r(\pmb{A}\pmb{A}^T)=r(\pmb{A}^T\pmb{A}).\\ [r(\pmb{A})+r(\pmb{B})-n]\leq r(\pmb{A}+\pmb{B})\leq r(\pmb{A})+r(\pmb{B}). \\ r(\pmb{AB})\leq \min\{r(\pmb{A}),r(\pmb{B})\}. \\ if\space \pmb{AB=O},then\space ,r(\pmb{A})+r(\pmb{B})\leq n. \\ if\space |\pmb{P}|,|\pmb{Q}|\ne0,r(\pmb{A})=r(\pmb{PA})=r(\pmb{AQ})=r(\pmb{PAQ}).\\ r(\pmb{A}^*)=\begin{cases} n&r(\pmb{A})=n\\ 1&r(\pmb{A})=n-1\\ 0&r(\pmb{A})<n-1 \end{cases},(n\geq2).\\ let\space \pmb{A}_{m\times n},\pmb{B}_{m\times s},then,\max\{r(\pmb{A}),r(\pmb{A})\}\leq r(\pmb{A}\space\vdots \space B)\leq r(\pmb{A})+r(\pmb{B}). \\ \pmb{\alpha,\beta\ne 0},r(\pmb{A})=1 \pmb{\Longleftrightarrow} \pmb{A}=\pmb{\alpha\beta}^T.\\ r\begin{pmatrix} \pmb{A} & \pmb{O} \\ \pmb{O}& \pmb{B}\end{pmatrix}=r(\pmb{A})+r(\pmb{A}). r(A)=r(AT)=r(AAT)=r(ATA).[r(A)+r(B)n]r(A+B)r(A)+r(B).r(AB)min{r(A),r(B)}.if AB=O,then ,r(A)+r(B)n.if P,Q=0,r(A)=r(PA)=r(AQ)=r(PAQ).r(A)= n10r(A)=nr(A)=n1r(A)<n1,(n2).let Am×n,Bm×s,then,max{r(A),r(A)}r(A  B)r(A)+r(B).α,β=0,r(A)=1A=αβT.r(AOOB)=r(A)+r(A).


三、概统

常见分布的期望及方差

{ 分布 ‾ 分布律或概率密度 ‾ 数学期望 ‾ 方差 ‾ ( 0 − 1 )分布 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 p p ( 1 − p ) 二项分布 P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 ⋯ n n p n p ( 1 − p ) 泊松分布 P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , ⋯ λ λ 正态分布 f ( x ) = 1 2 π σ E X P ( − ( x − μ ) 2 2 σ 2 ) μ σ 2 几何分布 P { X = k } = ( 1 − p ) k − 1 p , k = 1 , 2 , ⋯ 1 / p ( 1 − p ) / p 2 \begin{cases}\underline{分布}&\underline{分布律或概率密度}&\underline{数学期望}&\underline{方差}\\ (0-1)分布&P\{X=k\}=p^k(1-p)^{1-k},k=0,1&p&p(1-p)\\ 二项分布& P\{X=k\}=C_n^kp^k(1-p)^{n-k},k=0\cdots n&np&np(1-p)\\ 泊松分布&P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,\cdots&\lambda&\lambda \\ 正态分布 & f(x)=\frac{1}{\sqrt{2\pi}\sigma}E XP(-\frac{(x-\mu)^2}{2\sigma^2})&\mu&\sigma^2\\ 几何分布&P\{X=k\}=(1-p)^{k-1}p,k=1,2,\cdots&1/p&(1-p)/p^2\end{cases} 分布01)分布二项分布泊松分布正态分布几何分布分布律或概率密度P{X=k}=pk(1p)1k,k=0,1P{X=k}=Cnkpk(1p)nk,k=0nP{X=k}=k!λkeλ,k=0,1,2,f(x)=2π σ1EXP(2σ2(xμ)2)P{X=k}=(1p)k1p,k=1,2,数学期望pnpλμ1/p方差p(1p)np(1p)λσ2(1p)/p2 均匀分布: f ( x ) = { 1 / ( b − a ) , a < x < b 0 , e l s e , E ( X ) = a + b 2 , D ( X ) = ( b − a ) 2 12 . f(x)=\begin{cases} 1/(b-a),&a<x<b \\ 0,&else \end{cases},E(X)=\frac{a+b}{2},D(X)=\frac{(b-a)^2}{12}. f(x)={1/(ba),0,a<x<belse,E(X)=2a+b,D(X)=12(ba)2. 指数分布: f ( x ) = { λ e − λ x , x > 0 0 , e l s e , E ( X ) = 1 λ , D ( X ) = 1 λ 2 . f(x)=\begin{cases} \lambda e^{-\lambda x},&x>0 \\ 0,&else \end{cases},E(X)=\frac{1}{\lambda},D(X)=\frac{1}{\lambda^2}. f(x)={λeλx,0,x>0else,E(X)=λ1,D(X)=λ21.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/131769.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云智慧联合北航提出智能运维(AIOps)大语言模型及评测基准

随着各行业数字化转型需求的不断提高&#xff0c;人工智能、云计算、大数据等新技术的应用已不仅仅是一个趋势。各行业企业和组织纷纷投入大量资源&#xff0c;以满足日益挑剔的市场需求&#xff0c;追求可持续性和竞争力&#xff0c;这也让运维行业迎来了前所未有的挑战和机遇…

数据结构-二叉树·堆(顺序结构的实现)

&#x1f389;个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名乐于分享在学习道路上收获的大二在校生 &#x1f43b;‍❄个人主页&#x1f389;&#xff1a;GOTXX &#x1f43c;个人WeChat&#xff1a;ILXOXVJE&#x1f43c;本文由GOTXX原创&#xff0c;首发CSDN&…

1-爬虫-requests模块快速使用,携带请求参数,url 编码和解码,携带请求头,发送post请求,携带cookie,响应对象, 高级用法

1 爬虫介绍 2 requests模块快速使用 3 携带请求参数 4 url 编码和解码 4 携带请求头 5 发送post请求 6 携带cookie 7 响应对象 8 高级用法 1 爬虫介绍 # 爬虫是什么&#xff1f;-网页蜘蛛&#xff0c;网络机器人&#xff0c;spider-在互联网中 通过 程序 自动的抓取数据 的过程…

【wp】2023鹏城杯初赛 Web web1(反序列化漏洞)

考点&#xff1a; 常规的PHP反序列化漏洞双写绕过waf 签到题 源码&#xff1a; <?php show_source(__FILE__); error_reporting(0); class Hacker{private $exp;private $cmd;public function __toString(){call_user_func(system, "cat /flag");} }class A {p…

Ansible中的角色使用

Ansible中的角色使用&#xff1a; 目录 一、ansible角色简介 二、roles目录结构 三、roles的创建 四、roles的使用 1、书写task主任务 2、触发器模块 3、变量模块 4、j2模块 5、files模块 6、启用模块 7、执行playbook 五、控制任务执行顺序 六、多重角色的使用 一…

数据结构(超详细讲解!!)第二十一节 特殊矩阵的压缩存储

1.压缩存储的目标 值相同的元素只存储一次 压缩掉对零元的存储&#xff0c;只存储非零元 特殊形状矩阵&#xff1a; 是指非零元&#xff08;如值相同的元素&#xff09;或零元素分布具有一定规律性的矩阵。 如&#xff1a; 对称矩阵 上三角矩阵 下三角矩阵 对角矩阵 准…

redis教程 二 redis客户端Jedis使用

文章目录 Redis的Java客户端-JedisJedis快速入门创建工程&#xff1a;引入依赖&#xff1a;建立连接测试&#xff1a;释放资源Jedis连接池创建Jedis的连接池改造原始代码 Redis的Java客户端-SpringDataRedis快速入门导入pom坐标配置文件测试代码 数据序列化器StringRedisTempla…

【unity实战】Unity实现2D人物双击疾跑

最终效果 前言 我们要实现的功能是双击疾跑&#xff0c;当玩家快速地按下同一个移动键两次时能进入跑步状态 我假设快速按下的定义为0.2秒内&#xff0c;按下同一按键两次 简单的分析一下需求&#xff0c;实现它的关键在于获得按键按下的时间&#xff0c;我们需要知道第一次…

generate by chatgpt:应用上线前的checkList(部分是我自己的回答)

prompt 1 想象你是一名高级测试工程师&#xff0c;在应用上线前你需要提供一份checklist,请写出来: 作为一名高级测试工程师&#xff0c;以下是我在应用上线前的检查清单&#xff1a; 功能性测试&#xff1a; 检查所有要素和功能是否正常工作。确保满足了所有用户故事/需求。…

STM32G030F6P6 芯片实验 (二)

STM32G030F6P6 芯片实验 (二) Hello World - GPIO LED 尝试了下, 从 0 开始建 MDK HAL M0plus Project, 成功点亮 LED了。 但是 ST-LINK跑着跑着, 码飞了! 不知飞哪去了。 只好拿 MX 建了个 MDK Base。 呼叫 SysTick HAL_Delay(), 切换 LED。 基本上都是一样的用法, 只是换…

MapReduce WordCount程序实践(IDEA版)

环境 Linux&#xff1a;Hadoop2.x Windows&#xff1a;jdk1.8、Maven3、IDEA2021 步骤 编程分析 编程分析包括&#xff1a; 1.数据过程分析&#xff1a;数据从输入到输出的过程分析。 2.数据类型分析&#xff1a;Map的输入输出类型&#xff0c;Reduce的输入输出类型&#x…

关于curl在线上环境报400的问题

问题&#xff1a;测试环境调用三方接口正常&#xff0c;线上环境接口报错400。 排查&#xff1a;两个方向&#xff1a;1代码问题&#xff0c;2线上ip没在三方控制后台加白名单。 首先postman模拟请求三方接口正常&#xff0c;于是在postman生成curl指令。 curl --location --r…

蓝桥杯每日一题2023.11.2

题目描述 等差素数列 - 蓝桥云课 (lanqiao.cn) 题目分析 对于此题我们需要求出最小的公差并且长度为10&#xff0c; 1.确保序列开始为素数 2.确定枚举的个数 注意&#xff1a;序列中数只是d的变化&#xff0c;可以通过此计算将开始数字后9个数字都计算出来&#xff0c;d是…

【Qt之QtXlsx模块】安装及使用

1. 安装Perl&#xff0c;编译QtXlsx源码用 可以通过命令行进行查看是否已安装Perl。 下载及安装传送门&#xff1a;链接: https://blog.csdn.net/MrHHHHHH/article/details/134233707?spm1001.2014.3001.5502 1.1 未安装 命令&#xff1a;perl --version 显示以上是未安装…

C#中LINQtoSQL只能在.NetFramework下使用,不能在.net 下使用

目录 一、在net7.0下无法实现LINQtoSQL 1.VS上建立数据库连接 2.VS上创建LINQtoSQL 二、在.NetFramework4.8下成功实现LINQtoSQL 1.VS上建立数据库连接 2.VS上创建LINQtoSQL 三、结论 四、理由 本文是个人观点&#xff0c;因为我百般努力在.net7.0下无法实现LINQtoSQL的…

海康Visionmaster-全局脚本:方案加载完成信号发给通 信设备的方法

需要在方案加载完成后&#xff0c;发送加载完成信号到全局变量&#xff0c;发送给通信设备。 全局脚本的使用可以通过打开示例&#xff0c;完成常用的基本功能开发。 打开全局通信代码后&#xff0c;在脚本中添加代码

springboot前后端时间类型传输

springboot前后端时间类型传输 前言1.java使用时间类型java.util.Date2.java使用localDateTime 前言 springboot前后端分离项目总是需要进行时间数据类型的接受和转换,针对打代码过程中不同的类型转化做个总结 1.java使用时间类型java.util.Date springboot的项目中使用了new …

vue2知识补充

1.页面传参及传参之后刷新页面数据丢失 query参数有多层对象时&#xff0c;刷新丢失可以使用JSON.stringify解决 params参数丢失&#xff1a;还没试过怎么解决 methods: {// query和params区别// query类似 get&#xff0c;跳转之后页面 url后面会拼接参数,类似?id1&#xf…

http和https分别是什么?

HTTP&#xff08;Hypertext Transfer Protocol&#xff09;和HTTPS&#xff08;HTTP Secure&#xff09;是互联网上应用最为广泛的两类协议&#xff0c;都是用于在网络中进行数据交换。 1.HTTP&#xff1a; HTTP是一种无状态的协议&#xff0c;即服务器并不保持与客户端的连接…

Proteus仿真--1602LCD显示电话拨号键盘按键实验(仿真文件+程序)

本文主要介绍基于51单片机的LCD1602显示电话拨号键盘按键实验&#xff08;完整仿真源文件及代码见文末链接&#xff09; 仿真图如下 其中右下方12个按键模拟仿真手机键盘&#xff0c;使用方法同手机键一样&#xff0c;拨打手机号码则在液晶显示屏上显示对应的号码 仿真运行…