译文:我们如何使 Elasticsearch 7.11 中的 date_histogram 聚合比以往更快

这篇文章是ES7.11版本的文章,主要学习的是思路,记录在这里留作以后参考用。

原文地址:https://www.elastic.co/cn/blog/how-we-made-date-histogram-aggregations-faster-than-ever-in-elasticsearch-7-11

正文开始:

Elasticsearch 的 date_histogram 聚合是 Kibana 的 Discover 和 Logs Monitoring UI 的基石。我经常使用它来调查构建失败的趋势,但当它运行缓慢时,我会感到不高兴。用了整整四秒钟才绘制出过去六个月某个测试的所有失败情况!我可没有那么多时间!谁能把我的四秒钟还给我?所以在过去的六个月里,我一直在努力提升它的性能。断断续续地。

手动进行舍入

在很久之前(2018年),有一个 bug,名为“time_zone 选项会使 date_histogram 聚合变得慢”。那些涉及夏令时转换的时区会慢四倍。@jpountz 通过在不包含夏令时转换的分片上解释时间并忽略夏令时来修复了它。这很好,因为没有夏令时转换的时区很容易处理!你只需从 UTC 减去它们的偏移量,四舍五入,再加上偏移量,然后进行聚合。嗯,你不亲自操作,是 CPU 来执行的,但问题或情况仍会存在,你能理解吧。

所以 date_histogram 聚合速度很快。但每隔六个月它就会变慢!通常在索引中有大约一天的数据是相当常见的。如果你必须在带有夏令时转换的索引之一上运行 date_histogram,速度会很慢。在我知道这个问题之时,日期舍入本身比具有夏令时转换的分片要慢大约1400%。

原来,我们使用的是 java.util.time APIs,它们非常可爱、精确,并涵盖了所有内容,但它们会分配对象。而你确实希望避免为聚合中的每个数值创建新对象。所以我们摘下了手套,为自己实现了一套特定于日期舍入方式的夏令时转换代码。现在,我们不再分配对象,而是可以构建一个包含分片可见的所有夏令时转换的数组,然后进行二进制搜索。这很快!即使分片有成千上万个转换。对数时间真是一件美妙的事情。

停止舍入

但是,如果你要在分片上预先计算所有数据的夏令时转换,为什么不预先计算所有的“舍入点”呢?也就是 date_histogram 可能生成的每个存储桶的所有键。在我们实现“去除限制”的舍入 API 时,我们进行了所有工作,将索引中的最小日期和最大日期流式传输到所有正确的位置,因此你可以从最小日期开始,然后获取下一个舍入值,直到超出最大日期,将其添加到一个数组中并进行二进制搜索。然后你根本不需要再调用日期舍入代码。这种方法总是更快的。嗯,几乎总是。只有当你有很长时间范围内的一小组文档时,才不适用。但即使在这种情况下,它也很快。再次强调,对数时间是一种奇妙的东西。

开始过滤

稍微偏题一下:@polyfractal 提出了一个想法,通过查看搜索索引而不是文档值,可以加速范围聚合。这显示出了相当引人注目的速度提升,但我们不想合并这个原型,因为维护成本较高,而且人们并不经常使用范围聚合。

但我们意识到,如果你已经预先计算了 date_histogram 的所有“舍入点”,你可以将其转换为范围聚合。如果你像 @polyfractal 的原型一样,为该范围聚合使用搜索索引,你将获得8倍的速度提升。现在,正在维护范围聚合的优化,因为它正在为日期直方图聚合提供优化支持。

这是我们第一次将一个聚合转换为另一个聚合,以更高效地执行它。实际上,我们执行了两次。我们将 date_histogram 转换为范围聚合,然后将范围聚合转换为过滤聚合。过滤聚合从来没有非常快。因此,我们为其编写了“按过滤器过滤”的执行模式,以在某些情况下生成正确的结果,并在其他情况下不使用它。因此,事件的顺序如下:
在这里插入图片描述
这个方法的巧妙之处在于你可以在沿途的任何站点上加入“optimization train - 优化列车”。范围聚合将检查它们是否可以运行“filter by filter - 按过滤器过滤”。过滤聚合也会这样检查。

它没有范围特定优化所带来的维护负担,因为我们只需要维护新的“filter by filter - 按过滤器过滤”执行机制和聚合重写。而且我们可能可以通过其他重写来加速更多的聚合。我们能否将terms聚合重写为filters聚合并获得相同的优化效果?很可能!我们是否可以通过将 date_histogram 聚合中的terms聚合视为filters聚合而不是另一个filters聚合来优化它?也许。我们是否可以将geo-distance聚合重写为环形过滤器?很可能,但实际上可能不会更快。即使它不会在本质上更快,是否值得这样做,以减少工作集?找出答案将是一件有趣的事情。

于是,这个全新的世界 需要 崭新的 基准测试。我们依靠JMH进行微基准测试,而依靠Rally进行宏观基准测试。我们每晚运行Rally并发布结果。但这是另一篇博客文章的故事了。

无论如何,看到自己的工作让图表变得更好是一件有趣的事情。总的来说,这是一次有趣的旅程。在过去的一年里,我阅读的汇编语言比过去15年加起还要多。(后面的都是宣传广告了,就不贴了)

结束

感谢您的阅读,别忘了点赞、收藏哟~ Thanks♪(・ω・)ノ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/131747.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数组】有序数组的平方

## 977.有序数组的平方 力扣题目链接 (opens new window) 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 示例 1: 输入:nums [-4,-1,0,3,10]输出:[0,…

初阶JavaEE(15)(Cookie 和 Session、理解会话机制 (Session)、实现用户登录网页、上传文件网页、常用的代码片段)

接上次博客:初阶JavaEE(14)表白墙程序-CSDN博客 Cookie 和 Session 你还记得我们之前提到的Cookie吗? Cookie是HTTP请求header中的一个属性,是一种用于在浏览器和服务器之间持久存储数据的机制,允许网站…

g.Grafana之Gauge的图形说明

直接上操作截图 1. 创建一个新的Dashboard 2.为Dashboard创建变量 【General】下的Name与Label的名称自定义 【Query options】 下的Group可以填写Zabbix内的所有组/.*/ , 然后通过Regex正则过滤需要的组名 3.设置Dashboard的图形 我使用文字来描述下这个图 1.我们在dash…

Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测

目录 一、环境准备二、下载 ONNX 模型文件2.1 Azure 机器学习工作室2.2 Azure 机器学习 Python SDK2.3 生成模型进行批量评分多类图像分类 三、加载标签和 ONNX 模型文件四、获取 ONNX 模型的预期输入和输出详细信息ONNX 模型的预期输入和输出格式多类图像分类 多类图像分类输入…

Intel oneAPI笔记(2)--jupyter官方文档(oneAPI_Intro)学习笔记

前言 本文是对jupyterlab中oneAPI_Essentials/01_oneAPI_Intro文档的学习记录,包含对SYCL、DPC extends SYCL、oneAPI Programming models等介绍和SYCL代码的初步演示等内容 oneAPI编程模型综述 oneAPI编程模型提供了一个全面而统一的开发人员工具组合&#xff0…

论文阅读—— BiFormer(cvpr2023)

论文:https://arxiv.org/abs/2303.08810 github:GitHub - rayleizhu/BiFormer: [CVPR 2023] Official code release of our paper "BiFormer: Vision Transformer with Bi-Level Routing Attention" 一、介绍 1、要解决的问题:t…

0002Java安卓程序设计-基于Uniapp+springboot菜谱美食饮食健康管理App

文章目录 开发环境 《[含文档PPT源码等]精品基于Uniappspringboot饮食健康管理App》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功 编程技术交流、源码分享、模板分享、网课教程 🐧裙:776871563 功能介绍&#xff…

ES-初识ES

文章目录 介绍ElasticSearchElasticSearch的主要功能ElasticSearch的主要特性ElasticSearch的家族成员LogStashKibanaBeats ELK(ElasticSearch LogStash Kibana)的应用场景与数据库集成指标采集/日志分析 安装和配置ElasticSearch一、安装1、下载ES安装…

深度学习实战:基于TensorFlow与OpenCV的手语识别系统

文章目录 写在前面基于TensorFlow与OpenCV的手语识别系统安装环境一、导入工具库二、导入数据集三、数据预处理四、训练模型基于CNN基于LeNet5基于ResNet50 五、模型预测基于OpenCV 写在后面 写在前面 本期内容:基于TensorFlow与OpenCV的手语识别系统 实验环境&…

lv9 嵌入式开发 数据库sqlite

1 数据库基本概念 数据(Data) 能够输入计算机并能被计算机程序识别和处理的信息集合 数据库 (Database) 数据库是在数据库管理系统管理和控制之下,存放在存储介质上的数据集合 2 常用的数据库 大型数据库…

过了面试,后面的在线测评还会刷人吗?

过了面试,后面的在线测评还会刷人吗?完全有可能刷,如果不是为了刷,何必要给你做线上测评,我说的有道理不? 好吧,说到为什么在线测评要刷人,怎么刷? 怎么才能确保不被刷&…

Idea 对容器中的 Java 程序断点远程调试

第一种:简单粗暴型 直接在java程序中添加log.info(),根据需要打印信息然后打包覆盖,根据日志查看相关信息 第二种:远程调试 在IDEA右上角点击编辑配置设置相关参数在Dockerfile中加入 "-jar", "-agentlib:jdwp…

【移远QuecPython】EC800M物联网开发板的硬件PWM和PWM输出BUG

【移远QuecPython】EC800M物联网开发板的硬件PWM和PWM输出BUG 文章目录 导入库初始化PWM开启PWMPWM硬件BUG附录:列表的赋值类型和py打包列表赋值BUG复现代码改进优化总结 py打包 导入库 from misc import PWM_V2或者 from misc import PWM但我觉得PWM_V2好用 初…

Adobe:受益于人工智能,必被人工智能反噬

来源:猛兽财经 作者:猛兽财经 总结: (1)Adobe(ADBE)受益于生成式人工智能的兴起,其一直能实现两位数的收入增长就证明了这一点。 (2)在生成式人工智能兴起时,该公司就快…

基于若依的ruoyi-nbcio流程管理系统增加仿钉钉流程设计(六)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 这节主要讲条件节点与并发节点的有效性检查,主要是增加这两个节点的子节点检查,因为…

【从零开始学习Redis | 第五篇】基于布隆过滤器解决Redis的穿透问题

前言: 在如今的开发中,使用缓存中间件Redis已经成为一项很广泛的技术,Redis的高性能大大优化了我们的服务器性能,缓解了在高并发的情况下服务器的压力。它基于缓存的形式,在内存中保存数据,减少对磁盘的IO操…

听GPT 讲Rust源代码--library/std(15)

题图来自 An In-Depth Comparison of Rust and C[1] File: rust/library/std/src/os/wasi/io/fd.rs 文件路径:rust/library/std/src/os/wasi/io/fd.rs 该文件的作用是实现与文件描述符(File Descriptor)相关的操作,具体包括打开文…

✔ ★【备战实习(面经+项目+算法)】 11.5学习

✔ ★【备战实习(面经项目算法)】 坚持完成每天必做如何找到好工作1. 科学的学习方法(专注!效率!记忆!心流!)2. 每天认真完成必做项,踏实学习技术 认真完成每天必做&…

MFC 基础篇(一)

目录 一.SDK编程 二.为什么要学MFC? 三.MFC能做什么? 四.MFC开发环境搭建 五.MFC项目创建 六.消息映射机制 一.SDK编程 Application Programming Interface 应用程序编程接口。 Software Development Kit 软件开发工具包,一般会包括A…

【入门Flink】- 04Flink部署模式和运行模式【偏概念】

部署模式 在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。Flink为各种场景提供了不同的部署模式,主要有以下三种:会话模式(Session Mode)、单作业模式(Per-Job Mode&…