【监控指标】监控系统-prometheus、grafana。容器化部署。go语言 gin框架、gRPC框架的集成

文章目录

  • 一、监控有哪些指标
  • 二、prometheus、grafana架构
    • Prometheus 组件
    • Grafana 组件
    • 架构优点
  • 三、安装prometheus和node-exporter
    • 1. docker pull镜像
    • 2. 启动node-exporter
    • 3. 启动prometheus
  • 四、promql基本语法
  • 五、grafana的安装和使用
    • 1. 新建空文件夹grafana-storage,用来存储数据
    • 2. 启动grafana(如果和已有的端口冲突改一下端口)
    • 3. 配置prometheus并使用
  • 六、导入Grafana模板
  • 七、guages、counter、histograms指标
    • guages
    • Counter
    • Histograms
  • 八、go语言集成prometheus
  • 九、grpc框架集成prometheus
  • 十、gin框架集成prometheus


一、监控有哪些指标

监控1. 业务监控(上层概念 - 领导层):需求方:老板、运营开发方: 大数据库 ,都会访问业务库,大数据库会从同步库, 宽表QPS、DAU日活、访问状态(http code)、业务接口(登录、注册、聊天、上传、留言、搜索、投诉)、 产品转换率、充值额度2. 系统监控需求方: 运维开发方: 运维操作系统相关: cpu使用率、内存使用、磁盘使用率、磁盘空间(非常常见)、TCP(上W的链接),流量组件: mysql、redis、kafka3. 日志监控需求方:运维、开发开发方:开发两种日志:业务日志(大数据, 普通日志)、 系统日志(操作系统日志、mysql组件日志、kakfa的日志)监控中的重头戏,一般我们都会对单独针对日志设计日志管理系统, ELK日志系统, loki4. 网络监控:需求方:机房管理开放方:服务器管理IDC 交换机、路由器、防火墙、负载均衡、服务器、机柜、电源、UPS、空调、网络设备、机房环境监控,网络:内部网络(物理内网,虚拟内网(VPN))监控5. 程序监控:需求方:开发开发方:开发比如产生了 500 ErrUserNotFound一般要运维和开发人员配合,开发人员在程序中提供监控接口,运维人员通过接口获取监控数据prometheus的数据格式: metricsmetrics是一种对采样数据的总称

二、prometheus、grafana架构

官网:https://prometheus.fuckcloudnative.io/di-yi-zhang-jie-shao/overview

在这里插入图片描述

Prometheus 组件

  • Prometheus server:Prometheus 的核心组件,负责收集、存储和查询时间序列数据。
  • Exporters:Exporters 是 Prometheus 用来从目标系统收集数据的插件。Exporters 可以是主动拉取数据的,也可以是被动推送数据的。
  • Pushgateway:Pushgateway 是一个被动推送数据的 Exporter,用于收集短暂运行的任务或服务的数据。
  • Alertmanager:Alertmanager 负责处理 Prometheus 发出的告警,并将告警发送到指定的通知系统。
  • Prometheus web UI:Prometheus 自带的 Web 界面,用于查看 Prometheus 收集的数据。

Grafana 组件

  • Grafana:一个开源的图形化数据可视化工具,用于将 Prometheus 的数据进行可视化展示。
    架构说明

Prometheus通过 Exporters 从目标系统收集数据,并将数据存储到 Prometheus server。Prometheus server 还可以通过 Pushgateway 收集短暂运行的任务或服务的数据。Alertmanager 负责处理 Prometheus 发出的告警,并将告警发送到指定的通知系统。Prometheus web UI 用于查看 Prometheus 收集的数据。

Grafana 与 Prometheus 的结合

Grafana 可以与 Prometheus 结合使用,将 Prometheus 的数据进行可视化展示。Grafana 可以创建各种类型的图表,用于展示 Prometheus 的数据,例如曲线图、柱状图、饼图等。

架构优点

Prometheus 和 Grafana 的结合具有以下优点:

  • 可扩展性:Prometheus 和 Grafana 都是可扩展的系统,可以满足不同规模的监控需求。
  • 灵活性:Prometheus 和 Grafana 提供了丰富的功能,可以满足不同的监控需求。
  • 开源:Prometheus 和 Grafana 都是开源软件,可以免费使用。

三、安装prometheus和node-exporter

1. docker pull镜像

docker pull prom/node-exporter
docker pull prom/prometheus
docker pull grafana/grafana

2. 启动node-exporter

docker run -d -p 9100:9100 -v "/proc:/host/proc:ro" -v "/sys:/host/sys:ro" -v "/:/rootfs:ro" prom/node-exporter

访问url:
http://127.0.0.1:9100/metrics

在这里插入图片描述

3. 启动prometheus

建立 /opt/prometheus/prometheus.yml

内容如下:

global:scrape_interval: 60sevaluation_interval:	60sscrape_configs:- job_name: prometheusstatic_configs:- targets: ['localhost:9090']labels:instance: prometheus- job_name: linuxstatic_configs:- targets: ['自己的ip:9100']labels:instance: localhost

启动:

docker run -d \
-p 9090:9090 \
-v /opt/prometheus/prometheus.yml:/etc/prometheus/prometheus.yml \
prom/prometheus

访问url:

127.0.0.1:9090/graph

在这里插入图片描述

四、promql基本语法

不需要花过多的精力学习它 用到的时候使用即可

Prometheus Query Language(PromQL)是用于查询和分析从 Prometheus 中收集的监控指标数据的查询语言。以下是 PromQL 的基本语法和一些常见的查询操作符:

  1. 选择时间范围

    • time(): 获取当前时间戳。
    • timestamp(): 将时间戳转换为日期和时间。
    • offset <duration>: 偏移查询的时间范围。
  2. 选择指标数据

    • <metric_name>: 选择具体的指标名称。
    • {<label_name>=<label_value>}: 使用标签选择指标实例。
    • up{job="api"}: 选择标签 job 等于 api 的指标数据。
  3. 基本查询操作符

    • =: 等于。
    • !=: 不等于。
    • =~: 正则表达式匹配。
    • !~: 不匹配正则表达式。
  4. 聚合操作

    • sum(<vector>): 对指标数据进行求和。
    • avg(<vector>): 对指标数据取平均值。
    • min(<vector>): 获取指标数据的最小值。
    • max(<vector>): 获取指标数据的最大值。
    • count(<vector>): 计算指标数据的数量。
    • rate(<vector>[<duration>]): 计算速率,通常用于计算速率指标,例如请求速率。
    • increase(<vector>[<duration>]): 计算增长量,通常用于计算计数器类型的指标。
  5. 时间窗口

    • [<duration>]: 指定查询的时间范围。
    • offset <duration>: 设置查询时间范围的偏移量。
  6. 聚合函数

    • by(<label>): 按标签对结果进行分组。
    • topk(<k>, <vector>): 获取前 k 个结果。
    • quantile(<q>, <vector>): 计算分位数。
  7. 布尔操作

    • and: 逻辑与。
    • or: 逻辑或。
    • unless: 逻辑非。
  8. 函数:PromQL 支持多种函数,用于对指标数据进行操作和处理,如 abs(), floor(), ceil(), round() 等。

  9. 括号:可以使用括号来控制操作符的优先级。

以下是一些示例 PromQL 查询:

  • up{job="api"}: 选择标签 job 等于 apiup 指标数据。
  • sum(rate(http_requests_total{job="web"}[5m])): 计算过去 5 分钟内 jobwebhttp_requests_total 指标的速率总和。
  • node_cpu{mode="idle"} / ignoring(cpu) group_left sum(node_cpu):计算 node_cpumode 为 “idle” 的 CPU 使用率与所有 CPU 使用率的比例,同时按 node_cpu 的标签进行分组。

PromQL 具有丰富的功能和语法,允许您执行各种复杂的查询和分析操作,以满足您的监控需求。要深入了解 PromQL,请参考 Prometheus 官方文档或相关教程。

在这里插入图片描述

五、grafana的安装和使用

1. 新建空文件夹grafana-storage,用来存储数据

mkdir /opt/grafana-storage
chmod 777 -R /opt/grafana-storage

2. 启动grafana(如果和已有的端口冲突改一下端口)

docker run -d -p 3000:3000 --name=grafana -v /opt/grafana-storage/:/var/lib/grafana grafana/grafana

访问:

127.0.0.1:3000

默认用户名密码:admin/admin

在这里插入图片描述

3. 配置prometheus并使用

点进Data sources
在这里插入图片描述

然后add一个

在这里插入图片描述

输入自己的ip直接完成:

在这里插入图片描述

这时候没有展示 展示什么需要自己配置

重点了解一下panelrow就可以了

panel是仪表盘
row是很多panel

这里直接点蓝按钮了
在这里插入图片描述

然后进行查询就可以看到数据了

在这里插入图片描述

这里apply以后可以save保存

在这里插入图片描述

保存完以后可以直接进来看你创建的指标 也就是一个row

在这里插入图片描述

六、导入Grafana模板

官方模板:grafana.com/grafana/dashboards/?search=kafka

比如找一个redis的模板下载:

在这里插入图片描述

下载完json之后导入到grafana:

在这里插入图片描述

可以找其他的模板导入 比如jaeger redis等等

七、guages、counter、histograms指标

guages

最简单的度量指标,只是一个简单的返回值,或者叫瞬时状态,我们想要知道一个队列中的个数
比如:当前的内存使用率、当前的CPU使用率、当前的磁盘使用率、当前的磁盘空间、当前的TCP连接数、当前的流量、当前的QPS、当前的DAU、当前的访问状态、当前的业务接口、当前的产品转换率、当前的充值额度、当前的业务日志、当前的系统日志、当前的网络设备、当前的服务器、当前的机柜、当前的电源、当前的UPS、当前的空调、当前的网络设备、当前的机房环境监控、当前的程序监控
随着时间的推移, 这个值是不断变化的, 这个值有可能增加,有可能减少

Counter

是计数器, 这个值是从0开始累积,在理想状态下,这个值不可能减少
在理想状态下:如果我的服务器重启,同时这个数是放在内存中的

guages和counter是最主要的类型 70%

Histograms

http_res_time 表示http请求的响应时间
nginx
如果我要统计一天的所有访问的平均耗时
如果我们统计下来平均耗时是50ms 但是, 现在中午有一段时间系统卡住了, 1W个请求 平均耗时是在5s,
但是由于我们每天的访问量很大, 1000W访问量,这个5s耗时的请求就被平均掉了
越早发现越好, 有可能是程序的bug,也有可能是系统的bug
50ms以内有多少请求, 50-200ms有多少请求 200ms-500ms有多少请求 500ms-1s有多少请求 1s-5s有多少请求 5s以上有多少请求
分布式图

八、go语言集成prometheus

直接上代码:

package mainimport ("github.com/gin-gonic/gin""github.com/prometheus/client_golang/prometheus""github.com/prometheus/client_golang/prometheus/promauto""github.com/prometheus/client_golang/prometheus/promhttp""time"
)// 声明一个counter
var (opt = promauto.NewCounter(prometheus.CounterOpts{Name: "jzin_test",Help: "just for test",})
)// 每秒自增
func recordMetrics() {for {opt.Inc()time.Sleep(2 * time.Second)}
}// 启动一个http服务,暴露metrics 让prometheus拉取
func main() {go recordMetrics()r := gin.Default()//promauto.NewCounter会把counter注册到defaultRegisterer中 gin.WrapH(promhttp.Handler())会把defaultRegisterer中的metrics暴露出来r.GET("/metrics", gin.WrapH(promhttp.Handler()))_ = r.Run(":8050")
}

启动后集成到/opt/prometheus里 添加你自己的ip:端口

比如:

global:scrape_interval: 60sevaluation_interval: 60sscrape_configs:- job_name: prometheusstatic_configs:- targets: ['localhost:9090']labels:instance: prometheus- job_name: linuxstatic_configs:- targets: ['172.26.28.143:9100', '你自己的ip:端口']labels:instance: localhost

然后重新运行prometheus

测试:
在这里插入图片描述

也可以集成到Garfana中

在这里插入图片描述

九、grpc框架集成prometheus

代码有点多 有点复杂 想要的私信吧

十、gin框架集成prometheus

使用现用的库:https://github.com/penglongli/gin-metrics.git

按照第三方实现即可:

package mainimport ("github.com/gin-gonic/gin""github.com/penglongli/gin-metrics/ginmetrics"
)func main() {r := gin.Default()// get global Monitor objectm := ginmetrics.GetMonitor()// +optional set metric path, default /debug/metricsm.SetMetricPath("/metrics")// +optional set slow time, default 5sm.SetSlowTime(10)// +optional set request duration, default {0.1, 0.3, 1.2, 5, 10}// used to p95, p99m.SetDuration([]float64{0.1, 0.3, 1.2, 5, 10})// set middleware for ginm.Use(r)r.GET("/product/:id", func(ctx *gin.Context) {"productId": ctx.Param("id"),})})_ = r.Run()
}

第三方还提供了garfana的直方图:

在这里插入图片描述

看起来效果挺好

json导入:

{"annotations": {"list": [{"builtIn": 1,"datasource": "-- Grafana --","enable": true,"hide": true,"iconColor": "rgba(0, 211, 255, 1)","name": "Annotations & Alerts","type": "dashboard"}]},"editable": true,"gnetId": null,"graphTooltip": 0,"id": 1,"links": [],"panels": [{"datasource": null,"description": "Application request rate every 5 minutes.","fieldConfig": {"defaults": {"custom": {},"mappings": [],"thresholds": {"mode": "absolute","steps": [{"color": "green","value": null},{"color": "red","value": 80}]}},"overrides": []},"gridPos": {"h": 6,"w": 8,"x": 0,"y": 0},"id": 4,"options": {"reduceOptions": {"calcs": ["mean"],"fields": "","values": false},"showThresholdLabels": false,"showThresholdMarkers": true},"pluginVersion": "7.2.0","targets": [{"expr": "rate(gin_request_total[5m])","interval": "","legendFormat": "","refId": "A"}],"timeFrom": null,"timeShift": null,"title": "PV Rate","type": "gauge"},{"aliasColors": {},"bars": false,"dashLength": 10,"dashes": false,"datasource": "Prometheus","description": "","fieldConfig": {"defaults": {"custom": {}},"overrides": []},"fill": 1,"fillGradient": 0,"gridPos": {"h": 6,"w": 8,"x": 8,"y": 0},"hiddenSeries": false,"id": 2,"legend": {"avg": false,"current": false,"max": false,"min": false,"show": true,"total": false,"values": false},"lines": true,"linewidth": 1,"nullPointMode": "null","options": {"alertThreshold": true},"percentage": false,"pluginVersion": "7.2.0","pointradius": 2,"points": false,"renderer": "flot","seriesOverrides": [],"spaceLength": 10,"stack": false,"steppedLine": false,"targets": [{"expr": "gin_request_total","format": "time_series","instant": false,"interval": "","legendFormat": "{{instance}}","refId": "A"}],"thresholds": [],"timeFrom": null,"timeRegions": [],"timeShift": null,"title": "PV","tooltip": {"shared": true,"sort": 0,"value_type": "individual"},"type": "graph","xaxis": {"buckets": null,"mode": "time","name": null,"show": true,"values": []},"yaxes": [{"format": "short","label": null,"logBase": 1,"max": null,"min": null,"show": true},{"format": "short","label": null,"logBase": 1,"max": null,"min": null,"show": true}],"yaxis": {"align": false,"alignLevel": null}},{"aliasColors": {},"bars": false,"dashLength": 10,"dashes": false,"datasource": null,"fieldConfig": {"defaults": {"custom": {}},"overrides": []},"fill": 1,"fillGradient": 0,"gridPos": {"h": 6,"w": 8,"x": 16,"y": 0},"hiddenSeries": false,"id": 6,"legend": {"avg": false,"current": false,"max": false,"min": false,"show": true,"total": false,"values": false},"lines": true,"linewidth": 1,"nullPointMode": "null","options": {"alertThreshold": true},"percentage": false,"pluginVersion": "7.2.0","pointradius": 2,"points": false,"renderer": "flot","seriesOverrides": [],"spaceLength": 10,"stack": false,"steppedLine": false,"targets": [{"expr": "gin_request_uv_total","interval": "","legendFormat": "{{instance}}","refId": "A"}],"thresholds": [],"timeFrom": null,"timeRegions": [],"timeShift": null,"title": "UV","tooltip": {"shared": true,"sort": 0,"value_type": "individual"},"type": "graph","xaxis": {"buckets": null,"mode": "time","name": null,"show": true,"values": []},"yaxes": [{"format": "short","label": null,"logBase": 1,"max": null,"min": null,"show": true},{"format": "short","label": null,"logBase": 1,"max": null,"min": null,"show": true}],"yaxis": {"align": false,"alignLevel": null}},{"aliasColors": {},"bars": false,"dashLength": 10,"dashes": false,"datasource": null,"fieldConfig": {"defaults": {"custom": {},"unit": "Bps"},"overrides": []},"fill": 1,"fillGradient": 0,"gridPos": {"h": 8,"w": 15,"x": 0,"y": 6},"hiddenSeries": false,"id": 12,"legend": {"avg": false,"current": false,"max": false,"min": false,"show": true,"total": false,"values": false},"lines": true,"linewidth": 1,"nullPointMode": "null","options": {"alertThreshold": true},"percentage": false,"pluginVersion": "7.2.0","pointradius": 2,"points": false,"renderer": "flot","seriesOverrides": [],"spaceLength": 10,"stack": false,"steppedLine": false,"targets": [{"expr": "rate(gin_request_body_total[5m])","interval": "","legendFormat": "{{instance}}-in","refId": "A"},{"expr": "rate(gin_response_body_total[5m])","interval": "","legendFormat": "{{instance}}-out","refId": "B"}],"thresholds": [],"timeFrom": null,"timeRegions": [],"timeShift": null,"title": "Traffic In-Out","tooltip": {"shared": true,"sort": 0,"value_type": "individual"},"type": "graph","xaxis": {"buckets": null,"mode": "time","name": null,"show": true,"values": []},"yaxes": [{"format": "Bps","label": null,"logBase": 1,"max": null,"min": null,"show": true},{"format": "bytes","label": null,"logBase": 1,"max": null,"min": null,"show": true}],"yaxis": {"align": false,"alignLevel": null}},{"cacheTimeout": null,"datasource": null,"fieldConfig": {"defaults": {"custom": {"align": null,"filterable": false},"mappings": [],"thresholds": {"mode": "absolute","steps": [{"color": "blue","value": null},{"color": "green","value": 80}]},"unit": "none"},"overrides": []},"gridPos": {"h": 8,"w": 9,"x": 15,"y": 6},"id": 10,"interval": null,"links": [],"options": {"displayMode": "basic","orientation": "horizontal","reduceOptions": {"calcs": ["last"],"fields": "","values": false},"showUnfilled": true},"pluginVersion": "7.2.0","targets": [{"expr": "sum by(uri, instance) (gin_uri_request_total)","format": "time_series","instant": false,"interval": "","intervalFactor": 1,"legendFormat": "{{instance}}-{{uri}}","refId": "A"}],"timeFrom": null,"timeShift": null,"title": "URI Request","type": "bargauge"},{"aliasColors": {},"breakPoint": "50%","cacheTimeout": null,"combine": {"label": "Others","threshold": 0},"datasource": null,"decimals": null,"fieldConfig": {"defaults": {"custom": {"align": null,"filterable": false},"mappings": [],"thresholds": {"mode": "absolute","steps": [{"color": "blue","value": null},{"color": "green","value": 80}]},"unit": "none"},"overrides": []},"fontSize": "80%","format": "none","gridPos": {"h": 7,"w": 7,"x": 0,"y": 14},"id": 13,"interval": null,"legend": {"show": true,"values": true},"legendType": "Right side","links": [],"nullPointMode": "connected","pieType": "pie","pluginVersion": "7.2.0","strokeWidth": 1,"targets": [{"expr": "sum by(method, instance) (gin_uri_request_total)","format": "time_series","instant": false,"interval": "","intervalFactor": 1,"legendFormat": "{{instance}}-{{method}}","refId": "A"}],"timeFrom": null,"timeShift": null,"title": "Method","type": "grafana-piechart-panel","valueName": "current"},{"aliasColors": {},"bars": false,"dashLength": 10,"dashes": false,"datasource": null,"fieldConfig": {"defaults": {"custom": {},"unit": "s"},"overrides": []},"fill": 1,"fillGradient": 0,"gridPos": {"h": 7,"w": 17,"x": 7,"y": 14},"hiddenSeries": false,"id": 16,"legend": {"avg": false,"current": false,"max": false,"min": false,"show": true,"total": false,"values": false},"lines": true,"linewidth": 1,"nullPointMode": "null","options": {"alertThreshold": true},"percentage": false,"pluginVersion": "7.2.0","pointradius": 2,"points": false,"renderer": "flot","seriesOverrides": [],"spaceLength": 10,"stack": false,"steppedLine": false,"targets": [{"expr": "histogram_quantile(0.95, sum (rate(gin_request_duration_bucket[5m])) by (le, instance))","interval": "","legendFormat": "p95","refId": "A"},{"expr": "histogram_quantile(0.99, sum (rate(gin_request_duration_bucket[5m])) by (le, instance))","interval": "","legendFormat": "p99","refId": "B"},{"expr": "sum (gin_request_duration_sum) / sum(gin_request_duration_count)","interval": "","legendFormat": "avg","refId": "C"}],"thresholds": [],"timeFrom": null,"timeRegions": [],"timeShift": null,"title": "Request Duration","tooltip": {"shared": true,"sort": 0,"value_type": "individual"},"type": "graph","xaxis": {"buckets": null,"mode": "time","name": null,"show": true,"values": []},"yaxes": [{"format": "s","label": null,"logBase": 1,"max": null,"min": null,"show": true},{"format": "bytes","label": null,"logBase": 1,"max": null,"min": null,"show": true}],"yaxis": {"align": false,"alignLevel": null}},{"aliasColors": {},"breakPoint": "50%","cacheTimeout": null,"combine": {"label": "Others","threshold": 0},"datasource": null,"decimals": null,"description": "","fieldConfig": {"defaults": {"custom": {"align": null,"filterable": false},"mappings": [],"thresholds": {"mode": "absolute","steps": [{"color": "blue","value": null},{"color": "green","value": 80}]},"unit": "none"},"overrides": []},"fontSize": "80%","format": "none","gridPos": {"h": 5,"w": 7,"x": 0,"y": 21},"id": 14,"interval": null,"legend": {"show": true,"values": true},"legendType": "Right side","links": [],"nullPointMode": "connected","pieType": "pie","pluginVersion": "7.2.0","strokeWidth": 1,"targets": [{"expr": "sum by(code, instance) (gin_uri_request_total)","format": "time_series","instant": false,"interval": "","intervalFactor": 1,"legendFormat": "{{instance}}-{{code}}","refId": "A"}],"timeFrom": null,"timeShift": null,"title": "Code","type": "grafana-piechart-panel","valueName": "current"},{"cacheTimeout": null,"datasource": null,"fieldConfig": {"defaults": {"custom": {"align": null,"filterable": false},"mappings": [],"thresholds": {"mode": "absolute","steps": [{"color": "blue","value": null},{"color": "green","value": 80}]},"unit": "none"},"overrides": []},"gridPos": {"h": 5,"w": 17,"x": 7,"y": 21},"id": 19,"interval": null,"links": [],"options": {"displayMode": "basic","orientation": "horizontal","reduceOptions": {"calcs": ["last"],"fields": "","values": false},"showUnfilled": true},"pluginVersion": "7.2.0","targets": [{"expr": "sum by(uri, instance) (gin_slow_request_total)","format": "time_series","instant": false,"interval": "","intervalFactor": 1,"legendFormat": "{{instance}}-{{uri}}","refId": "A"}],"timeFrom": null,"timeShift": null,"title": "Slow Request(default 5s)","type": "bargauge"}],"refresh": "5s","schemaVersion": 26,"style": "dark","tags": [],"templating": {"list": []},"time": {"from": "now-1h","to": "now"},"timepicker": {},"timezone": "","title": "Gin Application Metrics","uid": "FDB061FMz","version": 11
}

如果直方图报错Panel plugin not found: grafana-piechart-panel
那就给garfana安装插件

下载安装后放到插件目录/var/lib/grafana/plugins后重启grafana就可以了。

wget  https://grafana.com/api/plugins/grafana-piechart-panel/versions/latest/download -O grafana-piechart-panel.zip
unzip grafana-piechart-panel.zip 
mv grafana-piechart-panel grafana_data/plugins/
chown -R 472:472 *
docker restart grafana

把程序放到自己的服务器中 多写几条get post命令进行测试:

测试结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/131230.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【面试专题】设计模式篇①

1.工厂设计模式 工厂设计模式是一种创建型模式&#xff0c;它提供了一种创建对象的接口&#xff0c;但具体创建的对象类型可以在运行时决定。工厂设计模式主要解决的是创建对象的灵活性问题。 工厂设计模式主要包括简单工厂模式、工厂方法模式和抽象工厂模式三种。 简单工厂…

如何使用 SwiftUI 中新地图框架 MapKit

文章目录 前言MapKit 弃用项MapContentBuilder&#xff08;iOS 17&#xff09;地图交互地图样式地图控件地图相机位置总结 前言 了解 iOS 17 中的 MapKit 后&#xff0c;我们会发现 Apple 引入了更适合 SwiftUI 的 API。 MapKit 弃用项 一旦将你的 App 目标更新到 iOS 17&am…

宠物医院服务预约小程序的效果如何

随着养宠家庭增多及对爱宠的照顾加深&#xff0c;除了食品、服饰外&#xff0c;宠物医院近些年也迎来了较高发展&#xff0c;部分城市甚至聚集着众多品牌&#xff0c;以单店或多店品牌的方式拓展市场。 对宠物医院来说&#xff0c;一般都是拓展同市客户&#xff0c;或者多门店…

OpenFeign 的超时重试机制以及底层实现原理

目录 1. 什么是 OpenFeign&#xff1f; 2. OpenFeign 的功能升级 3. OpenFeign 内置的超时重试机制 3.1 配置超时重试 3.2 覆盖 Retryer 对象 4. 自定义超时重试机制 4.1 为什么需要自定义超时重试机制 4.2 如何自定义超时重试机制 5. OpenFeign 超时重试的底层原理 5…

【蓝桥杯】2023省赛H题

考察知识点&#xff1a;双向链表&#xff0c;小根堆 完整代码在文章末尾 题目 【问题描述】 给定一个长度为 N 的整数数列: A1,A2,...,AN。你要重复以下操作 K 次 :…

下载安装各种版本的Vscode以及解决VScode官网下载慢的问题

下载指定版本 在Vscode官网 Vscode官网更新子页 这里的左侧栏点击其中一个会跳转到某个版本&#xff0c;或者在官网子页 https://code.visualstudio.com/updates的后面跟上需要的版本号即可完成目标版本下载页面的跳转 选择Linux里的ARM包不会自动下载而是跳转到另一个页面 …

【大模型应用开发教程】04_大模型开发整体流程 基于个人知识库的问答助手 项目流程架构解析

大模型开发整体流程 & 基于个人知识库的问答助手 项目流程架构解析 一、大模型开发整体流程1. 何为大模型开发定义核心点核心能力 2. 大模型开发的整体流程1. 设计2. 架构搭建3. Prompt Engineering4. 验证迭代5. 前后端搭建 二、项目流程简析步骤一&#xff1a;项目规划与…

Sync Folders Pro(文件夹数据同步工具)

Sync Folders Pro for Mac 是一款功能强大的文件夹同步工具&#xff0c;旨在帮助用户在 Mac 计算机和移动设备之间创建双向同步。这款软件支持各种文件系统和设备&#xff0c;如 iPhone&#xff0c;iPad&#xff0c;iPod&#xff0c;Android 等。通过这款软件&#xff0c;用户可…

【Spring Security】Spring Security 认证过程源码分析

项目启动 我们在前面有了解到可以在application.yml中配置用户名密码,那么可以猜想:肯定是在项目启动的时候加载的,我们通过鼠标点击 进入SecurityProperties,我们在User中的getName上打断点,这样项目启动的时候就可以走到这里 之后我们通过点击:Drop Frame可以往回走进…

基于白冠鸡算法的无人机航迹规划-附代码

基于白冠鸡算法的无人机航迹规划 文章目录 基于白冠鸡算法的无人机航迹规划1.白冠鸡搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用白冠鸡算法来优化无人机航迹规划。 1.白冠鸡…

Python爬取读书网的图片链接和书名并保存在数据库中

一个比较基础且常见的爬虫&#xff0c;写下来用于记录和巩固相关知识。 一、前置条件 本项目采用scrapy框架进行爬取&#xff0c;需要提前安装 pip install scrapy# 国内镜像 pip install scrapy -i https://pypi.douban.com/simple 由于需要保存数据到数据库&#xff0c;因…

安达发|APS生产排程解决五金制造企业的需求

在五金制造行业中&#xff0c;生产排程一直是一个非常重要的环节。然而&#xff0c;由于五金行业的特点和痛点&#xff0c;传统的生产排程方法往往难以满足企业的需求。本文将针对五金行业的痛点&#xff0c;探讨如何利用APS生产排程解决这些问题。 首先&#xff0c;我们需要了…

JAVA毕业设计109—基于Java+Springboot+Vue的宿舍管理系统(源码+数据库)

基于JavaSpringbootVue的宿舍管理系统(源码数据库)109 一、系统介绍 本系统前后端分离 本系统分为学生、宿管、超级管理员三种角色 1、用户&#xff1a; 登录、我的宿舍、申请调宿、报修申请、水电费管理、卫生检查、个人信息修改。 2、宿管&#xff1a; 登录、用户管理…

为机器学习算法准备数据(Machine Learning 研习之八)

本文还是同样建立在前两篇的基础之上的&#xff01; 属性组合实验 希望前面的部分能让您了解探索数据并获得洞察力的几种方法。您发现了一些数据怪癖&#xff0c;您可能希望在将数据提供给机器学习算法之前对其进行清理&#xff0c;并且发现了属性之间有趣的相关性&#xff0c…

谈一谈SQLite、MySQL、PostgreSQL三大数据库

每一份付出&#xff0c;必将有一份收货&#xff0c;就像这个小小的果实&#xff0c;时间到了&#xff0c;也就会开花结果… 三大数据库概述 SQLite、MySQL 和 PostgreSQL 都是流行的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;但它们在功能、适用场景和性…

Leetcode刷题详解——全排列

1. 题目链接&#xff1a;46. 全排列 2. 题目描述&#xff1a; 给定一个不含重复数字的数组 nums &#xff0c;返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3] 输出&#xff1a;[[1,2,3],[1,3,2],[2,1,3],[2,3,1],…

pcigo图床插件的简单开发

1.前言&#xff1a; 如果想写一个图床并且投入使用&#xff0c;那么&#xff0c;接入picgo一定是一个不错的选择。picgo有着windows&#xff0c;mac&#xff0c;linux等多个客户端版本。实用且方便。 2. 开发的准备&#xff1a; 2.0. 需要安装一个node node这里我就不详细说…

网络攻击的威胁仍在上升、企业该如何解决

近十年来&#xff0c;网络攻击的频率和规模不断增加&#xff0c;对网站和在线资产构成了严重威胁。解决网站被攻击的问题需要采用多层次的安全策略&#xff0c;其中CDN&#xff08;内容分发网络&#xff09;的防护角度发挥了关键作用。本文将通过通俗易懂的方式从CDN的角度分析…

3.线性神经网络-3GPT版

#pic_center R 1 R_1 R1​ R 2 R^2 R2 目录 知识框架No.1 线性回归基础优化算法一、线性回归1、买房案例2、买房模型简化3、线性模型4、神经网络5、损失函数6、训练数据7、参数学习8、显示解9、总结 二、 基础优化算法1、梯度下降2、学习率3、小批量随机梯度下降4、批量大小5、…

jetsonTX2 nx配置yolov5和D435I相机,完整步骤

转载一篇问题解决博客&#xff1a;问题解决 一、烧录系统 使用SDK烧录 二、安装archiconda3 JETSON TX2 NX的架构是aarch64,与win10,linxu不同,所以不能安装Anaconda&#xff0c;这里安装对应的archiconda。 1. 安装 wget https://github.com/Archiconda/build-tools/rel…