时序分解 | Matlab实现PSO-VMD粒子群算法优化变分模态分解时间序列信号分解

时序分解 | Matlab实现PSO-VMD粒子群算法优化变分模态分解时间序列信号分解

目录

    • 时序分解 | Matlab实现PSO-VMD粒子群算法优化变分模态分解时间序列信号分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

PSO-VMD粒子群算法PSO优化VMD变分模态分解 可直接运行 分解效果好 适合作为创新点(Matlab完整源码和数据),适应度函数为样本熵
1.利用粒子群算法优化vmd中的参数k、a,分解效果好,包含边际谱、频率图、收敛曲线等图,满足您的需求,使用者较少,适合作为创新点。
2.包含VMD超参数优化迭代过程图,凸显每次迭代过程的变化。
3.粒子群算法(PSO)是一种群智能优化算法,具有收敛速度快、寻优能力强等优点。
4.数据为excel数据,方便替换,运行主程序main即可,可直接运行matlab程序。

程序设计

  • 完整源码和数据获取方式私信博主回复:Matlab实现PSO-VMD粒子群算法优化变分模态分解时间序列信号分解

%% 定义粒子群算法参数
% N 种群 T 迭代次数 
%% 随机初始化种群
D=dim;                   %粒子维数
c1=1.5;                 %学习因子1
c2=1.5;                 %学习因子2
w=0.8;                  %惯性权重Xmax=ub;                %位置最大值
Xmin=lb;               %位置最小值
Vmax=ub;                %速度最大值
Vmin=lb;               %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:Npbest(i)=fobj(x(i,:)); 
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:Nif(pbest(i)<gbest)g=p(i,:);gbest=pbest(i);end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:Tifor j=1:N%%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%if (fobj(x(j,:))) <pbest(j)p(j,:)=x(j,:);pbest(j)=fobj(x(j,:)); end%%%%%%%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%%%%if(pbest(j)<gbest)g=p(j,:);gbest=pbest(j);end%%%%%%%%%%%%%%%%%跟新位置和速度值%%%%%%%%%%%%%%%%%%%%%v(j,:)=w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...+c2*rand*(g-x(j,:));x(j,:)=x(j,:)+v(j,:);%%%%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%%%%if length(Vmax)==1for ii=1:Dif (v(j,ii)>Vmax)  |  (v(j,ii)< Vmin)v(j,ii)=rand * (Vmax-Vmin)+Vmin;endif (x(j,ii)>Xmax)  |  (x(j,ii)< Xmin)x(j,ii)=rand * (Xmax-Xmin)+Xmin;endend           elsefor ii=1:Dif (v(j,ii)>Vmax(ii))  |  (v(j,ii)< Vmin(ii))v(j,ii)=rand * (Vmax(ii)-Vmin(ii))+Vmin(ii);endif (x(j,ii)>Xmax(ii))  |  (x(j,ii)< Xmin(ii))x(j,ii)=rand * (Xmax(ii)-Xmin(ii))+Xmin(ii);endendendend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/131174.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023-11-04 LeetCode每日一题(数组中两个数的最大异或值)

2023-11-04每日一题 一、题目编号 421. 数组中两个数的最大异或值二、题目链接 点击跳转到题目位置 三、题目描述 给你一个整数数组 nums &#xff0c;返回 nums[i] XOR nums[j] 的最大运算结果&#xff0c;其中 0 ≤ i ≤ j < n 。 示例 1&#xff1a; 示例 2&…

[动态规划] (六) 路径问题 LeetCode 63.不同路径II

[动态规划] (六) 路径问题: LeetCode 63.不同路径II 文章目录 [动态规划] (六) 路径问题: LeetCode 63.不同路径II题目解析解题思路状态表示状态转移方程初始化和填表返回值 代码实现总结 63. 不同路径 II 题目解析 (1) 机器人从左上角移动到右下角 (2) 机器人只能向右或者向…

Android STR研究之四

前言&#xff1a; 在前三篇中初步介绍了开机流程和STR流程&#xff0c;这里讲唤醒 Android STR研究之一-CSDN博客 Android STR研究之二-CSDN博客 Android STR研究之三-CSDN博客 唤醒 如上文所述&#xff0c;当唤醒的时候代码会继续往下执行 private void doHandleDeepSleep(bo…

【漏洞复现】Nginx_0.7.65_空字节漏洞

感谢互联网提供分享知识与智慧&#xff0c;在法治的社会里&#xff0c;请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞扫描3、漏洞验证 1.1、漏洞描述 1.2、漏洞等级 1.3、影响版本 0.7.65 1.4、漏洞复现 1、基础环…

JavaScript数据类型检测与数据类型转换详细解析与代码实例

JavaScript是一种弱类型语言&#xff0c;因此在开发过程中&#xff0c;经常需要进行数据类型检测和数据类型转换。本文将详细介绍JavaScript中的数据类型检测和转换&#xff0c;并提供相关的代码实例。 一、数据类型检测 在JavaScript中&#xff0c;常用的数据类型有&#xf…

JavaSpringbootMySQL高校实训管理平台01557-计算机毕业设计项目选题推荐(附源码)

目 录 摘要 1 绪论 1.1 研究背景 1.2 研究意义 1.3论文结构与章节安排 2 高校实训管理平台系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据增加流程 2.2.2 数据修改流程 2.2.3 数据删除流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系…

Oracle安全基线检查

一、账户安全 1、禁止SYSDBA用户远程连接 用户具备数据库超级管理员(SYSDBA)权限的用户远程管理登录SYSDBA用户只能本地登录,不能远程。REMOTE_LOGIN_PASSWORDFILE函数的Value值为NONE。这意味着禁止共享口令文件,只能通过操作系统认证登录Oracle数据库。 1)检查REMOTE…

vue+prismjs 网页代码高亮插件

最近在使用wangEditor的过程中发现编辑器中代码块展示没有问题&#xff0c;但是预览编辑器中的内容样式丢失&#xff0c;看过wangEditor的文档后发现用到了Prism.js&#xff0c;现将使用的经验分享。 使用步骤 1、安装prismjs插件 // 1. 安装prismjs 插件 npm install prismj…

软考高项-项目资源管理过程

规划资源管理&#xff1a;定义如何估算、获取、管理和利用实物以及团队项目资源&#xff1b;估算活动资源&#xff1a;估算执行项目所需的团队资源&#xff0c;材料、设备和用品的类型和数量&#xff1b;获取资源&#xff1a;获取项目所需的团队成员、设施、设备、材料、用品和…

【python 深拷贝与浅拷贝】

python 深拷贝与浅拷贝 问题&#xff1a; 在用影刀编写流程的时候发现&#xff0c;明明只修改人名为“小张”对应的字典里面的值&#xff0c;但是所有的人名对应的值都被修改了。 原因&#xff1a; 第14行&#xff0c;设置键值对&#xff0c;值对应的变量“初始打卡类型字…

伪随机序列——m序列及MATLAB仿真

文章目录 前言一、m 序列1、m 序列的产生2、m 序列的性质①、均衡性②、游程分布③、移位相加特性④、自相关函数⑤、功率谱密度⑥、伪噪声特性 二、M 序列1、m 序列的产生2、m 序列的性质 三、MATLAB 中 m 序列1、m 序列生成函数的 MATLAB 代码2、MATLAB 仿真 前言 在通信系统…

CVE-2023-34040 Kafka 反序列化RCE

漏洞描述 Spring Kafka 是 Spring Framework 生态系统中的一个模块&#xff0c;用于简化在 Spring 应用程序中集成 Apache Kafka 的过程&#xff0c;记录 (record) 指 Kafka 消息中的一条记录。 受影响版本中默认未对记录配置 ErrorHandlingDeserializer&#xff0c;当用户将容…

二叉树第i层结点个数

//二叉树第i层结点个数 int LevelNodeCount(BiTree T, int i) {if (T NULL || i < 1)return 0;if (i 1) return 1;return LevelNodeCount(T->lchild, i - 1) LevelNodeCount(T->rchild, i - 1); } int GetDepthOfBiTree(BiTree T) {if (T NULL)return 0;return Ge…

【HTML】播放器如何自动播放【已解决】

自动播放器策略 先了解浏览器的自动播放器策略 始终允许静音自动播放在以下情况&#xff0c;带声音的自动播放才会被允许 2.1 用户已经与当前域进行交互 2.2 在桌面上&#xff0c;用户的媒体参与指数阈值(MEI)已被越过&#xff0c;这意味着用户以前播放带有声音的视频。 2.3 …

发现一款PDF转换成翻页电子书的网站

​随着科技的发展&#xff0c;电子书越来越受到人们的喜爱。而PDF格式的文件也越来越多地被人们使用。那么&#xff0c;如何将PDF文件转换成翻页电子书呢&#xff1f;今天就为大家推荐一款好用的PDF转翻页电子书网站。 一、网站介绍 这款网站是一款非常实用的在线转换工具&…

LeetCode 面试题 16.14. 最佳直线

文章目录 一、题目二、C# 题解 一、题目 给定一个二维平面及平面上的 N 个点列表 Points&#xff0c;其中第 i 个点的坐标为 Points[i][Xi,Yi]。请找出一条直线&#xff0c;其通过的点的数目最多。 设穿过最多点的直线所穿过的全部点编号从小到大排序的列表为 S&#xff0c;你仅…

【漏洞复现】Apache_Shiro_1.2.4_反序列化漏洞(CVE-2016-4437)

感谢互联网提供分享知识与智慧&#xff0c;在法治的社会里&#xff0c;请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞分析3、漏洞验证 说明内容漏洞编号CVE-2016-4437漏洞名称Apache_Shiro_1.2.4_反序列化漏洞漏洞评级…

selenium自动化测试入门 —— cookie 处理

driver.get_cookies() # 获得cookie 信息 driver.get_cookies(name) # 获得对应name的cookie信息 add_cookie(cookie_dict) # 向cookie 添加会话信息 delete_cookie(name) # 删除特定(部分)的cookie delete_all_cookies() # 删除所有cookie 示例&#xff1a; from sel…

基于深度学习的视频多目标跟踪实现 计算机竞赛

文章目录 1 前言2 先上成果3 多目标跟踪的两种方法3.1 方法13.2 方法2 4 Tracking By Detecting的跟踪过程4.1 存在的问题4.2 基于轨迹预测的跟踪方式 5 训练代码6 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的视频多目标跟踪实现 …