竞赛 深度学习疫情社交安全距离检测算法 - python opencv cnn

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 相关技术
    • 3.1 YOLOV4
    • 3.2 基于 DeepSort 算法的行人跟踪
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习疫情社交安全距离检测算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

安全的社交距离是公共预防传染病毒的途径之一。所以,在人群密集的区域进行社交距离的安全评估是十分重要的。社交距离的测量旨在保持个体之间的物理距离和减少相互接触的人群来减缓或阻止病毒传播,在抗击病毒和预防大流感中发挥重要作用。但时刻保持安全距离具有一定的难度,特别是在校园,工厂等场所,在这种情况下,开发智能摄像头等技术尤为关键。将人工智能,深度学习集成至安全摄像头对行人进行社交距离评估。现阶段针对疫情防范的要求,主要采用人工干预和计算机处理技术。人工干预存在人力资源要求高,风险大,时间成本高等等缺点。计算机处理等人工智能技术的发展,对社交安全距离的安全评估具有良好的效果。

2 实现效果

通过距离分类人群的高危险和低危险距离。

在这里插入图片描述
相关代码

import argparse
from utils.datasets import *
from utils.utils import *def detect(save_img=False):out, source, weights, view_img, save_txt, imgsz = \opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')# Initializedevice = torch_utils.select_device(opt.device)if os.path.exists(out):shutil.rmtree(out)  # delete output folderos.makedirs(out)  # make new output folderhalf = device.type != 'cpu'  # half precision only supported on CUDA# Load modelgoogle_utils.attempt_download(weights)model = torch.load(weights, map_location=device)['model'].float()  # load to FP32# torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning# model.fuse()model.to(device).eval()if half:model.half()  # to FP16# Second-stage classifierclassify = Falseif classify:modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weightsmodelc.to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = Truetorch.backends.cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz)else:save_img = Truedataset = LoadImages(source, img_size=imgsz)# Get names and colorsnames = model.names if hasattr(model, 'names') else model.modules.namescolors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]# Run inferencet0 = time.time()img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img_ = model(img.half() if half else img) if device.type != 'cpu' else None  # run oncefor path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = torch_utils.time_synchronized()pred = model(img, augment=opt.augment)[0]# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = torch_utils.time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# List to store bounding coordinates of peoplepeople_coords = []# Process detectionsfor i, det in enumerate(pred):  # detections per imageif webcam:  # batch_size >= 1p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()else:p, s, im0 = path, '', im0ssave_path = str(Path(out) / Path(p).name)s += '%gx%g ' % img.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwhif det is not None and len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print resultsfor c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += '%g %ss, ' % (n, names[int(c)])  # add to string# Write resultsfor *xyxy, conf, cls in det:if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhwith open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label formatif save_img or view_img:  # Add bbox to imagelabel = '%s %.2f' % (names[int(cls)], conf)if label is not None:if (label.split())[0] == 'person':people_coords.append(xyxy)# plot_one_box(xyxy, im0, line_thickness=3)plot_dots_on_people(xyxy, im0)# Plot lines connecting peopledistancing(people_coords, im0, dist_thres_lim=(200,250))# Print time (inference + NMS)print('%sDone. (%.3fs)' % (s, t2 - t1))# Stream resultsif view_img:cv2.imshow(p, im0)if cv2.waitKey(1) == ord('q'):  # q to quitraise StopIteration# Save results (image with detections)if save_img:if dataset.mode == 'images':cv2.imwrite(save_path, im0)else:if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:print('Results saved to %s' % os.getcwd() + os.sep + out)if platform == 'darwin':  # MacOSos.system('open ' + save_path)print('Done. (%.3fs)' % (time.time() - t0))

3 相关技术

3.1 YOLOV4

YOLOv4使用卷积网络 CSPDarknet-53 特征提取,网络结构模型如图 2 所示。在每个 Darknet-53的残块行加上 CSP(Cross
Stage Partial)结构13,将基础层划分为两部分,再通过跨层次结构的特征融合进行合并。并采用 FPN( feature pyramid
networks)结构加强特征金字塔,最后用不同层的特征的高分辨率来提取不同尺度特征图进行对象检测。最终网络输出 3
个不同尺度的特征图,在三个不同尺度特征图上分别使用 3 个不同的先验框(anchors)进行预测识别,使得远近大小目标均能得到较好的检测。
在这里插入图片描述
YOLOv4 的先验框尺寸是经PASCALL_VOC,COCO
数据集包含的种类复杂而生成的,并不一定完全适合行人。本研究旨在研究行人之间的社交距离,针对行人目标检测,利用聚类算法对 YOLOv4
的先验框微调,首先将行人数据集 F 依据相似性分为i个对象,即在这里插入图片描述,其中每个对象都具有 m
个维度的属性。聚类算法的目的是 i 个对象依据相似性聚集到指定的 j 个类簇,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中心。初始化 j 个 聚 类
中 心C c c c   1 2 , ,..., j,计算每一个对象到每一个聚类中心的欧式距离,见公式
在这里插入图片描述
之后,依次比较每个对象到每个聚类中心的距离,将对象分配至距离最近的簇类中心的类簇中,
得到 在这里插入图片描述个类簇S s s s  1 2 ,
,..., l,聚类算法中定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其公式见
在这里插入图片描述
相关代码

def check_anchors(dataset, model, thr=4.0, imgsz=640):# Check anchor fit to data, recompute if necessaryprint('\nAnalyzing anchors... ', end='')m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float()  # whdef metric(k):  # compute metricr = wh[:, None] / k[None]x = torch.min(r, 1. / r).min(2)[0]  # ratio metricbest = x.max(1)[0]  # best_xreturn (best > 1. / thr).float().mean()  #  best possible recallbpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))print('Best Possible Recall (BPR) = %.4f' % bpr, end='')if bpr < 0.99:  # threshold to recomputeprint('. Attempting to generate improved anchors, please wait...' % bpr)na = m.anchor_grid.numel() // 2  # number of anchorsnew_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)new_bpr = metric(new_anchors.reshape(-1, 2))if new_bpr > bpr:  # replace anchorsnew_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid)  # for inferencem.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # lossprint('New anchors saved to model. Update model *.yaml to use these anchors in the future.')else:print('Original anchors better than new anchors. Proceeding with original anchors.')print('')  # newline

3.2 基于 DeepSort 算法的行人跟踪

YOLOv4中完成行人目标检测后生成边界框(Bounding box,Bbox),Bbox 含有包含最小化行人边框矩形的坐标信息,本研究引入
DeepSort 算法[18]完成对行人的质点进行跟踪,目的是为了在运动矢量分析时算行人安全社交距离中。首先,对行人进行质点化计算。其质点计算公式如
在这里插入图片描述
确定行人质点后,利用 DeepSort 算法实现对多个目标的精确定位与跟踪,其核心算法流程如图所示:
在这里插入图片描述
相关代码

class TrackState:'''单个轨迹的三种状态'''Tentative = 1 #不确定态Confirmed = 2 #确定态Deleted = 3 #删除态class Track:def __init__(self, mean, covariance, track_id, class_id, conf, n_init, max_age,feature=None):'''mean:位置、速度状态分布均值向量,维度(8×1)convariance:位置、速度状态分布方差矩阵,维度(8×8)track_id:轨迹IDclass_id:轨迹所属类别hits:轨迹更新次数(初始化为1),即轨迹与目标连续匹配成功次数age:轨迹连续存在的帧数(初始化为1),即轨迹出现到被删除的连续总帧数time_since_update:轨迹距离上次更新后的连续帧数(初始化为0),即轨迹与目标连续匹配失败次数state:轨迹状态features:轨迹所属目标的外观语义特征,轨迹匹配成功时添加当前帧的新外观语义特征conf:轨迹所属目标的置信度得分_n_init:轨迹状态由不确定态到确定态所需连续匹配成功的次数_max_age:轨迹状态由不确定态到删除态所需连续匹配失败的次数'''   self.mean = meanself.covariance = covarianceself.track_id = track_idself.class_id = int(class_id)self.hits = 1self.age = 1self.time_since_update = 0self.state = TrackState.Tentativeself.features = []if feature is not None:self.features.append(feature) #若不为None,初始化外观语义特征self.conf = confself._n_init = n_initself._max_age = max_agedef increment_age(self):'''预测下一帧轨迹时调用'''self.age += 1 #轨迹连续存在帧数+1self.time_since_update += 1 #轨迹连续匹配失败次数+1def predict(self, kf):'''预测下一帧轨迹信息'''self.mean, self.covariance = kf.predict(self.mean, self.covariance) #卡尔曼滤波预测下一帧轨迹的状态均值和方差self.increment_age() #调用函数,age+1,time_since_update+1def update(self, kf, detection, class_id, conf):'''更新匹配成功的轨迹信息'''self.conf = conf #更新置信度得分self.mean, self.covariance = kf.update(self.mean, self.covariance, detection.to_xyah()) #卡尔曼滤波更新轨迹的状态均值和方差self.features.append(detection.feature) #添加轨迹对应目标框的外观语义特征self.class_id = class_id.int() #更新轨迹所属类别self.hits += 1 #轨迹匹配成功次数+1self.time_since_update = 0 #匹配成功时,轨迹连续匹配失败次数归0if self.state == TrackState.Tentative and self.hits >= self._n_init:self.state = TrackState.Confirmed #当连续匹配成功次数达标时轨迹由不确定态转为确定态def mark_missed(self):'''将轨迹状态转为删除态'''if self.state == TrackState.Tentative:self.state = TrackState.Deleted #当级联匹配和IOU匹配后仍为不确定态elif self.time_since_update > self._max_age:self.state = TrackState.Deleted #当连续匹配失败次数超标'''该部分还存在一些轨迹坐标转化及状态判定函数,具体可参考代码来源'''

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/130314.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网络奇遇记】那年我与计算机网络的初相识

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;《网络奇遇记》 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 一. 信息时代的计算机网络二. 计算网络的定义和分类三. 计算机网络的特点四. 计算机网路在信息时代的应用五…

图解Linux进程优先级

目录 1.什么是进程优先级&#xff1f; 2.进程优先级原理 3.查看进程优先级 4.修改进程优先级 4.1 setpriority函数原型 4.2 getpriority函数原型 4.3 sched_setscheduler函数原型 4.4 sched_getscheduler函数原型 4.5 sched_setparam函数原型 4.6 sched_getparam函数…

Unity Perception合成数据生成、标注与ML模型训练

在线工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D场景编辑器 任何训练过机器学习模型的人都会告诉你&#xff0c;模型是从数据得到的&#xff0c;一般来说&#xff0c;更多的数据和标签会带来更好的性能。 …

限制LitstBox控件显示指定行数的最新数据(3/3)

实例需求&#xff1a;由于数据行数累加增加&#xff0c;控件加载的数据越来越多&#xff0c;每次用户都需要使用右侧滚动条拖动才能查看最新数据。 因此希望ListBox只加载最后10行数据&#xff08;不含标题行&#xff09;&#xff0c;这样用户可以非常方便地选择数据&#xff…

JMeter组件

1.JMeter常用组件 必须组件&#xff1a;测试计划&#xff0c;线程组&#xff08;包含多个线程&#xff09;&#xff0c;取样器 测试计划&#xff0c;JMeter默认创建且仅有一个 线程组&#xff1a; 添加步骤&#xff1a; 选择TestPlan并点击鼠标右键添加 分类以及使用&…

Spring Data Redis + RabbitMQ - 基于 string 实现缓存、计数功能(同步数据)

目录 一、Spring Data Redis 1.1、缓存功能 1.1.1、分析 1.1.2、案例实现 1.1.3、效果演示 1.2、计数功能&#xff08;Redis RabbitMQ&#xff09; 1.2.1、分析 1.2.2、案例实现 一、Spring Data Redis 1.1、缓存功能 1.1.1、分析 使用 redis 作为缓存&#xff0c; M…

curl(四)证书相关

一 证书相关 ① -k 1、客户端忽略服务端证书校验 -k | --insecure --> 单向[1]、这个选项显式地允许curl 执行不安全 的SSL连接和传输[2]、所有SSL连接都试图通过使用默认安装的CA证书捆绑包来确保安全[3]、这使得所有被认为是不安全的连接失败,除非使用-k --> 自签…

一座 “数智桥梁”,华为助力“天堑变通途”

《水调歌头游泳》中的一句话&#xff0c;“一桥飞架南北&#xff0c;天堑变通途”&#xff0c;广为人们所熟知&#xff0c;其中展现出的&#xff0c;是中国人对美好出行的无限向往。 天堑变通途从来不易。 中国是当今世界上交通运输最繁忙、最快捷的国家之一&#xff0c;交通行…

2023-在mac下安装Homebrew的国内镜像

mac安装Homebrew的国内镜像 尝试使用其他下载源&#xff1a;GitHub 可能会受到访问限制&#xff0c;尝试使用其他镜像或下载源。您可以使用清华大学、中科大或阿里云的 Homebrew 镜像&#xff0c;以提高下载速度和可靠性。例如&#xff0c;可以使用阿里云的镜像来安装 Homebre…

任务1 部署ChatGLM3-6B大模型并进行对话测试

部署ChatGLM3-6B大模型并进行对话测试 0 介绍&#xff1a;1 趋动云项目创建与环境配置1.1 创建项目&#xff1a;1.2 配置环境1.2.1 进入终端1.2.2 设置镜像源1.2.3 克隆项目,并安装依赖 2 修改代码&#xff0c;改路径以及启动代码3 运行代码3.1 运行gradio界面&#xff1a;3.2 …

雷池WAF社区版的使用教程

最近听说了一款免费又好用的WAF软件&#xff0c;雷池社区版&#xff0c;体验了一下虽然还有很多改进的空间 但是总体来说很适合小站长使用&#xff0c;和学习使用 也建议所有想学防火墙和红队&#xff08;攻击队&#xff09;练习使用&#xff0c;听说给官网提交绕过还有额外的…

ZKP Introduction of Nova (Yu Guo) 手写笔记

ZKP学习笔记 郭宇老师Nova课程手写笔记

你知道Python、Pycharm、Anaconda 三者之间的关系吗?

哈喽~大家好呀 Python作为深度学习和人工智能学习的热门语言&#xff0c;你知道Python、Pycharm、Anaconda 三者之间的关系吗&#xff1f;学习一门语言&#xff0c;除了学会其简单的语法之外还需要对其进行运行和实现&#xff0c;才能实现和发挥其功能和作用。下面来介绍运行P…

机器学习(深度学习)轴承故障诊断分类(提供故障数据和python代码实现)

机器学习&#xff08;深度学习&#xff09;故障诊断分类&#xff08;提供故障数据和python代码实现&#xff09; 轴承故障数据集和python代码自取&#xff1a;https://mbd.pub/o/bread/ZZWTm5hw 摘要&#xff1a;机器学习广泛的应用于机械故障诊断和故障分类问题&#xff0c;本…

时间复杂度的计算技巧-算法模型中的时间复杂度如何计算,有哪些技巧呢

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下时间复杂度的计算技巧-算法模型中的时间复杂度如何计算&#xff0c;有哪些技巧呢&#xff0c;算法的时间复杂度是评估算法性能和效率的一种方式&#xff0c;它表示算法需要执行多少次基本操作才能完成其任务&#x…

Linux文本编辑器vim使用和配置详解

vim介绍 ​ vim是Linux的一款文本编辑器&#xff0c;可以用来编辑代码&#xff0c;而且支持语法高亮&#xff0c;还可以进行一系列配置使vim更多样化。也可以运行于windows&#xff0c;mac os上。 ​ vim有多种模式&#xff0c;但目前我们只介绍绝大多数场景用的到的模式&…

树结构及其算法-二叉树节点的插入

目录 树结构及其算法-二叉树节点的插入 C代码 树结构及其算法-二叉树节点的插入 二叉树节点插入的情况和查找相似&#xff0c;重点是插入后仍要保持二叉查找树的特性。如果插入的节点已经在二叉树中&#xff0c;就没有插入的必要了&#xff0c;如果插入的值不在二叉树中&…

集线器、交换机、网桥、路由器、网关

目录 集线器(HUB)交换机(SWITCH)网桥(BRIDGE)路由器(ROUTER)网关(GATEWAY)交换机和路由器的区别参考 集线器(HUB) 功能 集线器对数据的传输起到同步、放大和整形的作用 属于物理层设备 工作机制 使用集线器互连而成的以太网被称为共享式以太网。当某个主机要给另一个主机发送单…

轻量封装WebGPU渲染系统示例<13>- 屏幕空间后处理效果(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/main/src/voxgpu/sample/ScreenPostEffect.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 细节请见&#xff1a;引擎系统设计思路 - 用户态与系统态隔离-CSDN博客 2. 高频调用与低频调用隔离。…

【Unity实战】最全面的库存系统(五)

文章目录 先来看看最终效果前言配置商店系统数据创建另一个NPC绘制商店UI控制商店开关列出商品添加和删除物品功能添加商品到购物车购买商品购物车删除物品商店预览效果购买和出售切换出售功能保存商店数据快捷栏物品切换和使用完结 先来看看最终效果 前言 本期也是最好一期&a…