神经网络的初始化方法

文章目录

  • 1、随机初始化
  • 2、Xavier初始化
  • 3、He初始化
  • 4、权重预训练初始化
  • 5、零初始化

  • 对于神经网络的训练过程中,合适的参数初始化方法有助于更好的处理梯度消失和梯度爆炸问题。
  • 通常有以下几种初始化方法:

1、随机初始化

  • 随机初始化(Random Initialization):最简单的初始化方法是随机生成参数的初始值。可以根据一定的分布(如均匀分布或正态分布)从一个较小的范围内随机选择初始值,使得参数的初始状态具备一定的随机性。

2、Xavier初始化

  • Xavier 初始化(Xavier Initialization):在激活函数为Sigmoid或Tanh时表现较好。它根据连接权重的个数和输入/输出单元的数量来确定初始值的范围。权重的初始值从一个正态分布或者均匀分布中进行采样,并乘以一个较小的因子,以确保不会引起梯度消失或梯度爆炸问题。

  • 通过保持输入和输出的方差一致(服从相同的分布)避免梯度消失和梯度爆炸问题

  • Xavier均匀分布:
    在这里插入图片描述

  • Xavier正态分布:
    在这里插入图片描述

  • Pytorch的实现:

torch.nn.init.xavier_uniform_(tensor, gain=1.0)
torch.nn.init.xavier_normal_(tensor, gain=1.0)
''
tensor: 一个n维的输入tensor
gain:可选的权重因子,用于缩放分布
''

3、He初始化

  • He 初始化(He Initialization):适用于ReLU(Rectified Linear Unit)激活函数的初始化方法。与Xavier初始化类似,但在计算初始值的范围时,将输入单元的数量乘以一个较大的因子,以更好地适应ReLU激活函数的特性。

  • He初始化根据权重的输入单元数来确定初始值的范围。

  • He均匀分布:
    在这里插入图片描述

  • He正态分布:
    在这里插入图片描述

  • Pytorch的实现:

torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
''
tensor:一个n维的输入tensor
a:负斜率,仅和leaky_relu一起使用
mode:'fan_in'(默认)'fan_out'。选择“fan_in”保留了前向传递中权重方差的大小。选择“fan_out”保留向后传递的大小。
nonlinearity:非线性函数,建议仅与'relu''leaky_relu'(默认)一起使用。
''

4、权重预训练初始化

  • 权重预训练初始化(Pretrained Initialization):如果已经有一个在相似任务上训练得到的预训练模型,可以使用该模型的参数作为神经网络的初始化值。这种方法通过迁移学习的方式来加速模型的收敛和提高性能。

5、零初始化

  • 零初始化(Zero Initialization):将所有参数的初始值设置为零。然而,这种初始化方法在训练过程中会导致所有的参数都具有相同的更新值,无法破除对称性,因此很少使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12906.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

飞行动力学-第15节-part2-松杆中性点 之 基础点摘要

飞行动力学-第15节-part2-松杆中性点 之 基础点摘要 1. 松杆中性点2. 松浮角2. 杆力梯度3. 参考资料 1. 松杆中性点 stick fixed: N 0 N_0 N0​,握杆,升降舵固定stick free: N 0 ′ N_0 N0′​,松杆,升降舵…

java static修饰的静态成员

静态成员 特点: 1.静态成员可以被本类所有对象共享2.静态成员可以通过类名调用也可以推荐对象调用,但是推荐使用类名调用!3.静态成员随着类的加载而加载,优先于对象存在的静态方法的注意事项: 1.非静态方法可以访问任…

APP开发入门:了解主流的编程语言

在过去的几年里,有许多程序员开始学习和使用编程语言。这其中包括C、C、 Java和 Python。尽管有许多语言可供选择,但大多数程序员都会选择最容易学习的编程语言。 如今,有很多编程语言供选择。程序员们在学习这些语言时可以自由地选择他们喜…

Docker 镜像构建 搭建分布式LNMP论坛 实践

地址规划 nginx 172.18.0.10 mysql 172.18.0.20 php 172.18.0.30 宿主机准备 拉取镜像,下面以此镜像为基础 docker pull centos:7 创建自定义网段以便指定 IP 不变动 docker network create --subnet172.18.0.0/16 --opt "com.docker.network.bridge.na…

Spark Streaming流媒体引擎

Spark Streaming是Spark的上一代流媒体引擎。Spark Streaming不再有更新,它是一个遗留项目。Spark中有一个更新且更易于使用的流媒体引擎,称为结构化流媒体 概述 Spark Streaming是核心Spark API的扩展,支持实时数据流的可扩展、高吞吐量、…

条款38:对变化多端的线程句柄析构函数行为保持关注

条款37解释过,可联结的线程对应着一个底层系统执行线程,未推迟任务(参见条款36)的期值和系统线程有类似关系。这么一来,std::thread型别对象和期值对象都可以视作系统线程的句柄。 从这个视角来看,std::th…

Opencv的Mat内容学习

来源&#xff1a;Opencv的Mat内容小记 - 知乎 (zhihu.com) 1.Mat是一种图像容器&#xff0c;是二维向量。 灰度图的Mat一般存放<uchar>类型 RGB彩色图像一般存放<Vec3b>类型。 (1)单通道灰度图数据存放样式&#xff1a; (2)RGB三通道彩色图存放形式不同&#x…

Flutter 添加 example流程

一、已有Flutter工程&#xff08;命令&#xff09;添加 example 1、cd 工程(flutter_plugin ,是自己创建的)根目录 例: flutter create example 执行命令创建example PS&#xff1a;cd example 后执行flutter doctor 后就可以看到效果 2、如果需要指定iOS/Android 语言,请添加…

如何建立Docker私有仓库?

文章目录 docker私有仓库harborHarbor仓库部署Harbor仓库使用 docker私有仓库 Docker 私有仓库是一个用于存储和管理 Docker 镜像的私有存储库。它允许你在内部网络中创建和管理 Docker 镜像&#xff0c;并提供了更好的安全性和控制&#xff0c;因为你可以完全控制谁能够访问和…

ansible自动化运维(一)

&#x1f618;作者简介&#xff1a;正在努力的99年公司职员。 &#x1f44a;宣言&#xff1a;人生就是B&#xff08;birth&#xff09;和D&#xff08;death&#xff09;之间的C&#xff08;choise&#xff09;&#xff0c;做好每一个选择。 &#x1f64f;创作不易&#xff0c;…

机器学习 day31(baseline、学习曲线)

语音识别的Jtrain、Jcv和人工误差 对于逻辑回归问题&#xff0c;Jtrain和Jcv可以用分类错误的比例&#xff0c;这一方式来代替单单只看Jtrain&#xff0c;不好区分是否高偏差。可以再计算人类识别误差&#xff0c;即人工误差&#xff0c;作为基准线来进行比较Jtrain与baselin…

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-BiLSTM时间卷积…

Thymeleaf入门

Thymeleaf是前端开发模板&#xff0c;springboot默认支持。前端模板用法大多数是类似的jsp、thymeleaf、vue.js都有while\for\if\switch等使用&#xff0c;页面组件化等。 1.前端模板区别 jsp是前后端完全不分离的&#xff0c;jsp页面写一堆Java逻辑。 thymeleaf好处是html改…

非Spring环境 | Mybatis-Plus插入数据返回主键两种方式(注解或XML)

废话不多说&#xff0c;直接撸代码: <?xml version"1.0" encoding"UTF-8"?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <mapper namespace&qu…

【Spring】什么是Bean的生命周期及作用域,什么是Spring的执行流程?

博主简介&#xff1a;想进大厂的打工人博主主页&#xff1a;xyk:所属专栏: JavaEE进阶 在前面的播客中讲解了如何从Spring中存取Bean对象&#xff0c;那么本篇我们来讲解Bean对象的生命周期是什么&#xff0c;Bean对象的6种作用域分别是什么&#xff0c;都有哪些区别&#xff…

通过STM32内部ADC将烟雾传感器发送的信号值显示在OLED上

一.CubeMX配置 首先我们在CubeMX配置ADC1, 设置一个定时器TIM2定时1s采样一次以及刷新一次OLED&#xff0c; 打开IIC用于驱动OLED显示屏。 二.程序 在Keil5中添加好oled的显示库&#xff0c;以及用来显示的函数、初始化函数、清屏函数等。在主程序中初始化oled,并将其清屏。…

【RTT驱动框架分析02】-串口驱动分析

串口驱动学习 0.串口驱动的使用方法 //定义一个时间 struct rt_event system_event; #define SYS_EVENT_UART_RX_FINISH 0x00000001 /* UART receive data finish event *//*串口接收回调函数 Receive data callback function */ static rt_err_t uart_input(rt_device_t …

掌握Python的X篇_16_list的切片、len和in操作

接上篇掌握Python的X篇_15_list容器的基本使用&#xff0c;本篇进行进一步的介绍。 文章目录 1. list的索引下标可以是负数2. 切片&#xff08;slice&#xff09;2.1 切片基础知识2.2 如何“取到尽头”2.3 按照步长取元素2.4 逆序取值 3. len函数获取lis的元素个数4. in操作符…

rocketmq客户端本地日志文件过大调整配置(导致pod缓存cache过高)

现象 在使用rocketmq时&#xff0c;发现本地项目中文件越来越大&#xff0c;查找发现在/home/root/logs/rocketmqlog目录下存在大量rocketmq_client.log日志文件。 配置调整 开启slf4j日志模式&#xff0c;在项目启动项中增加-Drocketmq.client.logUseSlf4jtrue因为配置使用的…

手把手教你从0入门线段树~

1. 什么是线段树? 1.1 初探线段树 定义&#xff1a;线段树是一种用于解决区间查询问题的数据结构&#xff0c;是一种广义上的二叉搜索树。 原理&#xff1a;它将一个区间划分为多个较小的子区间&#xff0c;并为每个子区间存储一些有用的信息&#xff0c;例如最大值、最小值…