基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别 计算机竞赛

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理

import cv2 as cvimport osimport numpy as npimport randomimport pickleimport timestart_time = time.time()data_dir = './data'batch_save_path = './batch_files'# 创建batch文件存储的文件夹os.makedirs(batch_save_path, exist_ok=True)# 图片统一大小:100 * 100# 训练集 20000:100个batch文件,每个文件200张图片# 验证集 5000:一个测试文件,测试时 50张 x 100 批次# 进入图片数据的目录,读取图片信息all_data_files = os.listdir(os.path.join(data_dir, 'train/'))# print(all_data_files)# 打算数据的顺序random.shuffle(all_data_files)all_train_files = all_data_files[:20000]all_test_files = all_data_files[20000:]train_data = []train_label = []train_filenames = []test_data = []test_label = []test_filenames = []# 训练集for each in all_train_files:img = cv.imread(os.path.join(data_dir,'train/',each),1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)train_data.append(img_data)if 'cat' in each:train_label.append(0)elif 'dog' in each:train_label.append(1)else:raise Exception('%s is wrong train file'%(each))train_filenames.append(each)# 测试集for each in all_test_files:img = cv.imread(os.path.join(data_dir,'train/',each), 1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)test_data.append(img_data)if 'cat' in each:test_label.append(0)elif 'dog' in each:test_label.append(1)else:raise Exception('%s is wrong test file'%(each))test_filenames.append(each)print(len(train_data), len(test_data))# 制作100个batch文件start = 0end = 200for num in range(1, 101):batch_data = train_data[start: end]batch_label = train_label[start: end]batch_filenames = train_filenames[start: end]batch_name = 'training batch {} of 15'.format(num)all_data = {'data':batch_data,'label':batch_label,'filenames':batch_filenames,'name':batch_name}with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:pickle.dump(all_data, f)start += 200end += 200# 制作测试文件all_test_data = {'data':test_data,'label':test_label,'filenames':test_filenames,'name':'test batch 1 of 1'}with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:pickle.dump(all_test_data, f)end_time = time.time()print('制作结束, 用时{}秒'.format(end_time - start_time))

5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)fc3 = tf.layers.dense(fc2, 2, None)

5.3 tensorflow计算图可视化

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')self.y = tf.placeholder(tf.int64, [None], 'output_data')self.keep_prob = tf.placeholder(tf.float32)# 图片输入网络中fc = self.conv_net(self.x, self.keep_prob)self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)self.y_ = tf.nn.softmax(fc) # 计算每一类的概率self.predict = tf.argmax(fc, 1)self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步

acc_list = []with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(TRAIN_STEP):train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)eval_ops = [self.loss, self.acc, self.train_op]eval_ops_results = sess.run(eval_ops, feed_dict={self.x:train_data,self.y:train_label,self.keep_prob:0.7})loss_val, train_acc = eval_ops_results[0:2]acc_list.append(train_acc)if (i+1) % 100 == 0:acc_mean = np.mean(acc_list)print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(i+1,loss_val,train_acc,acc_mean))if (i+1) % 1000 == 0:test_acc_list = []for j in range(TEST_STEP):test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)acc_val = sess.run([self.acc],feed_dict={self.x:test_data,self.y:test_label,self.keep_prob:1.0})test_acc_list.append(acc_val)print('[Test ] step:{0}, mean_acc:{1:.5}'.format(i+1, np.mean(test_acc_list)))# 保存训练后的模型os.makedirs(SAVE_PATH, exist_ok=True)self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/128435.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode字符串题库 之 罗马数字转整数

题目链接🔗力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 1. 题目分析 我们在做题的时候,一定要知道题目的目的是什么,我们可以结合测试用例和提示来看。 我们可以分析以下几点: 1. 每一个罗马数字都…

Linux 目录

目录 1. Linux 目录1.1. 目录 /usr/bin 和 /usr/local/bin 区别 1. Linux 目录 1.1. 目录 /usr/bin 和 /usr/local/bin 区别 /usr/bin 下面的都是系统预装的可执行程序, 系统升级有可能会被覆盖。/usr/local/bin 目录是给用户放置自己的可执行程序。

物联网系统的基本构件

1.基本组件 云服务器 数据库消息服务器应用服务器管理平台 云APP 云服务器的维护终端微信客户端网页管理平台 页面式的更全面的管理。组态软件和PLC软件 编程软件终端设备 PLC 主要指标,模拟数字接口数量 DO有 继电器和1.5,2.5.5V数字输出一般支持扩展IO模块模拟量…

C++设计模式_25_Interpreter 解析器

Interpreter 解析器被归为“领域规则”模式。Interpreter模式比较适合简单的文法表示,应用场景是比较有限的,解决问题的思路和场景都是一样的。 文章目录 1. “领域规则”模式1.1 典型模式2. 动机( Motivation)3. 代码演示Interpreter 解析器模式4. 模式定义5. 结构( Structu…

目标检测:Proposal-Contrastive Pretraining for Object Detection from Fewer Data

论文作者:Quentin Bouniot,Romaric Audigier,Anglique Loesch,Amaury Habrard 作者单位:Universit Paris-Saclay; Universit Jean Monnet Saint-Etienne; Universitaire de France (IUF) 论文链接:http://arxiv.org/abs/2310.16835v1 内容…

视频列表:点击某个视频进行播放,其余视频全部暂停(同时只播放一个视频)

目录 需求实现原理实现代码页面展示 需求 视频列表:点击某个视频进行播放,其余视频全部暂停(同时只播放一个视频) 实现原理 在 video 标签添加 自定义属性 id (必须唯一)给每个 video 标签 添加 play 视频播放事件播放视频时&…

Ha-NeRF源码解读 train_mask_grid_sample

目录 背景: (1)Ha_NeRF论文解读 (2)Ha_NeRF源码复现 (3)train_mask_grid_sample.py 运行 train_mask_grid_sample.py解读 1 NeRFSystem 模块 2 forward()详解 3 模型训练tranining_st…

JavaScript设计模式之发布-订阅模式

发布者和订阅者完全解耦(通过消息队列进行通信) 适用场景:功能模块间进行通信,如Vue的事件总线。 ES6实现方式: class eventManager {constructor() {this.eventList {};}on(eventName, callback) {if (this.eventL…

[common c/c++] ring buffer/circular buffer 环形队列/环形缓冲区

前言: ring buffer / circular buffer 又名环形队列 / 环形缓冲区,其通过开辟固定尺寸的内存来实现反复复用同一块内存的目的。由于预先开辟了固定尺寸的内容,所以当数据满的时候,可以有两种处理方式,具体使用哪一种按…

HCL模拟器综合实验案例(2)

本案例提供给计算机网络专业学生以及参加新华三杯的同学进行学习 题目 由于公司并购前的历史原因导致双方使用不同的 OSPF 进程,经由总部技术部统一规划后再做调整,现阶段使用暂时过渡方案,即使用静态路由、OSPF、RIP、BGP多协议组网&#x…

协同办公系统:企业提质增效的利器

随着科技的不断发展,企业对于提高工作效率、优化管理流程、降低成本的需求日益迫切。协同办公系统应运而生,成为了许多企业提质增效的利器。那么,协同办公系统究竟是如何帮助企业实现这些目标的呢?本文将从以下几个方面进行详细阐…

【CSS】样式的计算过程

标签的 CSS 样式 现在有这么一段 HTML 代码&#xff1a; <div class"test"><h1>Hello World</h1> </div>目前我们没有给 h1 设置任何样式&#xff0c;可以看到 h1 自带了一些样式&#xff0c;eg&#xff1a;font-size、font-weight、margi…

微信小程序快速备案的通道揭秘方法

随着国家政策的调整&#xff0c;微信小程序备案已变得刻不容缓。传统备案路径较为繁琐&#xff0c;耗时较长&#xff0c;为解决此痛点&#xff0c;今天我们将揭示一个快速备案的新通道。 步骤1&#xff1a;探索智慧助手 打开微信&#xff0c;探索“智慧商家服务助手”公众号。…

NProgress顶部进度条的用法

大家打开一个网页的时候&#xff0c;会看到一个进度条&#xff0c;然后加载完成后进度条就消失了。这个呢&#xff0c;就是一个第三方的进度条库&#xff0c;叫做nprogress. 1.首先安装nprogress(咱直接用npm安装了) : npm install --save nprogress 2.然后在 router/index.j…

编译支持GPU的opencv,并供python的import cv2调用

下载opencv和opencv_contrib&#xff0c;cmake过程中要下载的一些包可以手动下载配置&#xff0c;如果网络较好&#xff0c;也可以等待自动下载。主要记录的是cmake命令&#xff1a; cmake -D CMAKE_BUILD_TYPERELEASE \-D BUILD_opencv_python3YES \-D CMAKE_INSTALL_PREFIX/…

Mac允许任何来源的的安装包进行安装

首先打开终端&#xff0c;开启“任何来源”&#xff0c;执行如下命令&#xff1a; sudo spctl --master-disable 然后回车&#xff0c;继续输入密码&#xff08;密码输入时是不可见的&#xff09;&#xff0c;然后回车。 接着打开【系统偏好设置】&#xff0c;选择【安全性与…

MySQL(6):多表查询

多表查询&#xff0c;也称为关联查询&#xff0c;指两个或更多个表一起完成查询操作。 前提条件&#xff1a; 这些一起查询的表之间是有关系的&#xff08;一对一、一对多&#xff09;&#xff0c;它们之间一定是有关联字段&#xff0c;这个关联字段可能建立了外键&#xff0c;…

CSS3盒模型

CSS3盒模型规定了网页元素的显示方式&#xff0c;包括大小、边框、边界和补白等概念。2015年4月&#xff0c;W3C的CSS工作组发布了CSS3基本用户接口模块&#xff0c;该模块负责控制与用户接口界面相关效果的呈现方式。 1、盒模型基础 在网页设计中&#xff0c;经常会听到内容…

Spring Boot 整合 MyBatis Plus

目录 一、初始化演示数据 二、创建应用 二、应用配置 三、实体类 四、Mapper 五、Mapper 映射文件 六、Service 七、Service 层抽象接口 八、配置 Mapper 扫描包 九、在日志中输出 SQL 十、测试 MyBatis Plus 是 MyBatis 框架的一个增强。除了基本的 MyBatis 功能外…

浅谈安科瑞电力监控系统在百事亚洲研发中心的应用

摘要&#xff1a;介绍百事亚洲研发中心&#xff0c;采用智能电力仪表、采集配电现场的各种电参量和开关信号。系统采用现场就地组网的方式&#xff0c;组网后通过现场总线通讯并远传至后台&#xff0c;通过Acrel-2000型电力监控系统实现配电所配电回路用电的实时监控和管理。 …