神经网络气温预测

#引用所需要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim#优化器
#过滤警告
import warnings
warnings.filterwarnings(“ignore”)
%matplotlib inline

features=pd.read_csv(‘temps.csv’)
features.head()

year 	month 	day 	week 	temp_2 	temp_1 	average 	actual 	friend

0 2016 1 1 Fri 45 45 45.6 45 29
1 2016 1 2 Sat 44 45 45.7 44 61
2 2016 1 3 Sun 45 44 45.8 41 56
3 2016 1 4 Mon 44 41 45.9 40 53
4 2016 1 5 Tues 41 40 46.0 44 41

#把列转为时间处理数据
import datetime
years=features[‘year’]
months=features[‘month’]
days=features[‘day’]
#datetime格式
dates=[str(int (year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
dates=[datetime.datetime.strptime(date,‘%Y-%m-%d’)for date in dates]

features.shape

(348, 9)

dates[:5]

[datetime.datetime(2016, 1, 1, 0, 0),
datetime.datetime(2016, 1, 2, 0, 0),
datetime.datetime(2016, 1, 3, 0, 0),
datetime.datetime(2016, 1, 4, 0, 0),
datetime.datetime(2016, 1, 5, 0, 0)]

#小展示,看看数据集长什么样

#独热编码
features=pd.get_dummies(features)
features.head(5)

year 	month 	day 	temp_2 	temp_1 	average 	actual 	friend 	week_Fri 	week_Mon 	week_Sat 	week_Sun 	week_Thurs 	week_Tues 	week_Wed

0 2016 1 1 45 45 45.6 45 29 1 0 0 0 0 0 0
1 2016 1 2 44 45 45.7 44 61 0 0 1 0 0 0 0
2 2016 1 3 45 44 45.8 41 56 0 0 0 1 0 0 0
3 2016 1 4 44 41 45.9 40 53 0 1 0 0 0 0 0
4 2016 1 5 41 40 46.0 44 41 0 0 0 0 0 1 0

features.shape

(348, 15)

#标签(Y)
labels=np.array(features[‘actual’])
#在特征集中剔除标签,剩下x
features=features.drop(‘actual’,axis=1)
#单独保存名字,以备后患
feature_list=list(features.columns)
#转成数组格式->后续还需要转换成tensor张量
features=np.array(features)

features.shape

(348, 14)

#因为数据有大有小,归一化(数值浮动范围小)
from sklearn import preprocessing
input_features=preprocessing.StandardScaler().fit_transform(features)

#构建网络模型(复杂版)
#转为tensor
x = torch.tensor(input_features, dtype = float)
y = torch.tensor(labels, dtype = float)
#权重参数初始化
weights = torch.randn((14,128),dtype=float,requires_grad=True)
biases = torch.randn(128,dtype=float,requires_grad=True)
weights2 = torch.randn((128,1),dtype=float,requires_grad=True)
biases2 = torch.randn(1,dtype=float,requires_grad=True)

learning_rate = 0.001
losses = []

for i in range(1000):
#计算隐藏层
hidden = x.mm(weights)+biases
#给激活函数
hidden = torch.relu(hidden)
#预测
predictions = hidden.mm(weights2)+biases2
#计算损失
loss = torch.mean((predictions - y) ** 2)
losses.append(loss.data.numpy())

if i % 100 == 0 :print('loss:',loss)
# 反向传播计算  
loss.backward()#更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)
#记得清空权重参数,因为每次迭代会累计
weights.grad.data.zero_()
biases.grad.data.zero_()
weights2.grad.data.zero_()
biases2.grad.data.zero_()

loss: tensor(8652.8872, dtype=torch.float64, grad_fn=)
loss: tensor(155.4351, dtype=torch.float64, grad_fn=)
loss: tensor(147.5643, dtype=torch.float64, grad_fn=)
loss: tensor(144.6621, dtype=torch.float64, grad_fn=)
loss: tensor(143.1741, dtype=torch.float64, grad_fn=)
loss: tensor(142.2740, dtype=torch.float64, grad_fn=)
loss: tensor(141.6748, dtype=torch.float64, grad_fn=)
loss: tensor(141.2530, dtype=torch.float64, grad_fn=)
loss: tensor(140.9336, dtype=torch.float64, grad_fn=)
loss: tensor(140.6799, dtype=torch.float64, grad_fn=)

简化实现

指定规模

input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16

搭建网络

my_nn = torch.nn.Sequential(
torch.nn.Linear(input_size,hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size,output_size),
)

定义损失函数

cost = torch.nn.MSELoss(reduction = ‘mean’)
optimizer = torch.optim.Adam(my_nn.parameters(),lr = 0.001)

训练网络

losses = []
for i in range(1000):
batch_loss = []
# 小批量随机梯度下降进行训练
for start in range(0,len(input_features),batch_size):
end = start+batch_size if start + batch_size < len(input_features) else len(input_features)
xx = torch.tensor(input_features[start:end],dtype = torch.float,requires_grad = True)
yy = torch.tensor(labels[start:end],dtype = torch.float,requires_grad = True)
prediction = my_nn(xx)
loss = cost(prediction,yy)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
batch_loss.append(loss.data.numpy())

# 打印损失
# 打印损失值
if i % 100 == 0:losses.append(np.mean(batch_loss))print(i,np.mean(batch_loss))

0 4015.5623
100 38.040577
200 35.64831
300 35.261333
400 35.099106
500 34.968235
600 34.84836
700 34.728233
800 34.605637
900 34.48074

#评估模型
x = torch.tensor(input_features,dtype = torch.float)
predict = my_nn(x).data.numpy()

转换日期格式

dates = [str(int(year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
dates = [datetime.datetime.strptime(date,‘%Y-%m-%d’) for date in dates]

创建一个表格来存日期和其对应的标签数值

true_data = pd.DataFrame(data = {‘date’:dates,‘actual’:labels})

同理,在创建一个来存日期和其对应的模型预测值

mouths = features[:,feature_list.index(‘month’)]
days = features[:,feature_list.index(‘day’)]
years = features[:,feature_list.index(‘year’)]

test_dates = [str(int(year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
test_dates = [datetime.datetime.strptime(date,‘%Y-%m-%d’) for date in test_dates]

predictions_data = pd.DataFrame(data = {‘date’:test_dates,‘prediction’:predict.reshape(-1)})

真实值

plt.plot(true_data[‘date’],true_data[‘actual’],‘b-’,label = ‘actual’)

预测值

plt.plot(predictions_data[‘date’],predictions_data[‘prediction’],‘ro’,label = ‘prediction’)
plt.xticks(rotation = ‘60’)
plt.legend()

图名

plt.xlabel(‘Date’);plt.ylabel(‘Maximum Temperature (F)’);plt.title(‘Actual and Predicted Values’)

plt.show()
ValueError: rotation must be ‘vertical’, ‘horizontal’ or a number, not 60

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/128352.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

求矩阵高次幂的两种“另类”方法

文章目录 【方法一】运用哈密顿凯莱定理相关例题 【方法二】运用特征方程二阶矩阵求解通法三阶矩阵求解通法相关例题 市面上许多资料给出的计算矩阵高次幂的方法&#xff0c;无外乎有这几种&#xff1a; 分块矩阵求解高次幂&#xff1b;先求低次方幂&#xff0c;然后通过找规律…

阿里云OS系统Alibaba Cloud Linux 3系统的安全更新命令

给客户部署的服务&#xff0c;进入运维阶段&#xff0c;但是经常被客户监测到服务器漏洞&#xff0c;现在整理一下&#xff0c;服务器漏洞问题更新命令步骤。 服务器系统&#xff1a; 阿里云linux服务器&#xff1a;Alibaba Cloud Linux 3 漏洞类型和描述&#xff1a; #3214…

新体验:万圣节夜晚的新游戏!--愤怒的南瓜

引言&#xff1a; Chatgpt4.0 所带来的冲击似乎远超出人们想象&#xff0c;网页小游戏《愤怒的南瓜》在昨日&#xff08;万圣节夜晚&#xff09;火爆了外网。一位名为 Javi Lopez 的外国小哥使用 Midjourney、DALL•E 3 和 GPT-4 打开了一个无限可能的世界&#xff0c;重新演绎…

【Python全栈_公开课学习记录】

一、初识python (一).Python起源 Python创始人为吉多范罗苏姆&#xff08;荷兰&#xff09;&#xff0c;Python崇尚优美、清晰、简明的编辑风格。Python语言结构清晰简单、数据库丰富、运行成熟稳定&#xff0c;科学计算统计分析领先。目前广泛应用于云计算、Web开发、科学运算…

DSP 开发例程(5): tcp_server

目录 DSP 开发例程(5): tcp_server创建工程源码编辑tcp_echo.chelloWorld.c 调试说明 DSP 开发例程(5): tcp_server 此例程实现在 EVM6678L 开发板上创建 TCP Server进程, 完成计算机与开发板之间的 TCP/IP 通信. 例程源码可从我的 gitee 仓库上克隆或下载. 点击 DSP 开发教程…

【机器学习合集】模型设计之注意力机制动态网络 ->(个人学习记录笔记)

文章目录 注意力机制1. 注意力机制及其应用1.1 注意力机制的定义1.2 注意力机制的典型应用 2. 注意力模型设计2.1 空间注意力机制2.2 空间注意力模型2.3 通道注意力机制2.4 空间与通道注意力机制2.5 自注意力机制2.5 级联attention 动态网络1. 动态网络的定义2. 基于丢弃策略的…

jquery控制easyui中combobox、textbox显示隐藏

//combobox下拉框 $("#下拉框id.combo").hide();//textbox输入框 $("#输入框id.textbox").hide(); 参考网址&#xff1a; https://blog.csdn.net/Coldmood/article/details/128279727

PostgreSQL逻辑管理结构

1.数据库逻辑结构介绍 2.数据库基本操作 2.1 创建数据库 CREATE DATABASE name [ [ WITH ] [ OWNER [] user_name ] [ TEMPLATE [] template ] [ ENCODING [] encoding ] [ LC_COLLATE [] lc_collate ] [ LC_CTYPE [] lc_ctype ] [ TABLESPACE [] tablespace ] [ CONNECTION L…

Day17力扣打卡

打卡记录 参加会议的最多员工数&#xff08;拓扑排序 分类讨论&#xff09; 链接 计算内向基环树的最大基环&#xff0c;基环树基环为2的情况分类讨论。 class Solution { public:int maximumInvitations(vector<int> &favorite) {int n favorite.size();vector…

mac下的vscode配置编译环境

基础开发环境 创建Dockerfile文件&#xff0c;内容如下&#xff1a; FROM ubuntu:20.04RUN apt update & apt install make gcc cmake git ninja-build -y CMD [ "sleep", "infinity" ]创建docker-compose.yml文件&#xff0c;内容如下&#xff1a; …

4.多层感知机-3GPT版

#pic_center R 1 R_1 R1​ R 2 R^2 R2 目录 知识框架No.1 多层感知机一、感知机1、感知机2、训练感知机3、图形解释4、收敛定理5、XOR问题6、总结 二、多层感知机1、XOR2、单隐藏层3、单隐藏层-单分类4、为什么需要非线性激活函数5、Sigmoid函数6、Tanh函数7、ReLU函数8、多类分…

SDK是什么

SDK 是“Software Development Kit”&#xff08;软件开发工具包&#xff09;的缩写&#xff0c;它是一组用于开发特定软件应用、硬件平台、计算机系统或操作系统的开发工具的集合。SDK 通常包括一组开发工具、库、文档和示例代码&#xff0c;以帮助开发者更快地开发和部署应用…

SAML- 安全断言标记语言

一、概念 安全断言标记语言&#xff08;SAML&#xff09;是一种开放标准&#xff0c;用于在各方之间&#xff08;特别是身份提供商和服务提供商之间&#xff09;交换身份验证和授权数据。SAML 是一种基于XML的安全断言标记语言&#xff08;服务提供商用来做出访问控制决策的语句…

HTML标签、CSS介绍

标签的分类: 块级/行内 # 块级标签: 独占一行 h1~h6 p div """ 块儿级标签可以修改长宽. 行内标签不可以, 就算修改了也不会变化.块级标签内部可以嵌套任意的块级标签和行内标签. 特例: 是p标签虽然是块级标签 但是它只能嵌套行内标签 不能嵌套块级标签. 如…

linux安装apache并配置userid站点

目录 一、linux安装apache的方式 1、安装wget 2、下载CentOS 7的repo文件 3、更新镜像源 二、安装apache 1.通过命令直接安装apache(linux的软件包为httpd) 2.启动httpd服务 3.访问一下 三、apache配置文件 1.主配置文件 2.修改根目录 3.修改下端口 4.apache的工作…

华为OD面经Java

机试400分&#xff0c;部门流程与IT&#xff0c;base西安 分享面经攒人品 10.27 一面 深挖项目&#xff0c;面试官很友好&#xff0c;根据项目的每个技术点和场景来提问&#xff0c;比如项目中数据库数据量级有多大&#xff0c;什么时候会出现缓慢&#xff0c;如何解决的&…

BUUCTF 数据包中的线索 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 公安机关近期截获到某网络犯罪团伙在线交流的数据包&#xff0c;但无法分析出具体的交流内容&#xff0c;聪明的你能帮公安机关找到线索吗&#xff1f; 密文&#xff1a; 下载附件&#xff0c;解压得到一个.pcapng文…

【兔子王赠书第5期】ChatGPT速学通:文案写作+PPT制作+数据分析+知识学习与变现

文章目录 前言ChatGPT推荐图书作者简介内容简介推荐理由 粉丝福利尾声 前言 程序员如果有一天代码写不动了&#xff0c;还能干什么&#xff1f; 一位 80 后女程序员“兰猫”给出了她的答案——转型 AI 写手。兰猫从事程序员工作十余年&#xff0c;在繁重的工作压力下&#xf…

大数据毕业设计选题推荐-系统运行情况监控系统-Hadoop-Spark-Hive

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

目标检测YOLO实战应用案例100讲-基于多尺度特征融合与自适应网络的小目标检测

目录 前言 研究现状 深度学习研究现状 目标检测研究现状 研究现状存在的问题