在基于亚马逊云科技的湖仓一体架构上构建数据血缘的探索和实践

1d77e80175705d85bdbd20f8da326199.gif

背景介绍

随着大数据技术的进步,企业和组织越来越依赖数据驱动的决策。数据的质量、来源及其流动性因此显得非常关键。数据血缘分析为我们提供了一种追踪数据从起点到终点的方法,有助于理解数据如何被转换和消费,同时对数据治理和合规性起到关键作用。特别是在 DSL(Data Security Law,数据安全法)和 PIPL(Personal Information Protection Law,个人信息保护法)等数据隐私法规的背景下,这种分析确保了数据的合规性,减少了法律风险。

但数据血缘在收集阶段存在诸多挑战,如数据来源的多样性、数据流的混合、数据质量等问题。尤其在数据湖与数据仓库结合的湖仓一体架构下,这些问题更为复杂。数据湖中的数据格式多样,从半结构化到非结构化,而数据仓库主要针对结构化数据。因此,跨多个系统和工具追踪数据路径、统一不同的日志和元数据,都成为了巨大的挑战。

数据血缘,简而言之,是对数据从其来源到其最终目的地的整个生命周期的追踪和可视化。在当前数据驱动的时代,数据血缘已经成为数据管理和数据治理的关键组成部分。数据血缘的意义:

  • 透明性:数据血缘为组织提供了数据流的完整视图,使得数据工程师、分析师和业务用户都能清楚地了解数据的来源和转换过程。

  • 增强信任:当组织能够清晰地追踪数据的来源和流动,它可以增强内部和外部利益相关者对数据的信任。

  • 提高效率:数据问题可以迅速定位和解决,因为数据血缘提供了数据流的详细视图,从而减少了故障排查的时间。

  • 支持创新:当数据可访问且其来源和质量都已知时,组织可以更自信地进行数据驱动的创新。

本文会为您介绍在湖仓一体架构下,如何将亚马逊云科技的数据湖 Amazon S3 在数据 ETL 处理过程中通过 Spline 捕获并产生在图数据库 ArangoDB 中的数据血缘和数据仓库 Amazon Redshift 通过 DBT 产生的数据血缘进行合并,并使用图数据库 Amazon Neptune 通过 DAG 图进行可视化展示。

架构设计

在大数据时代,湖仓一体架构逐渐成为数据管理的前沿。这种架构继承了数据湖和数据仓库的长处,为企业提供了一个集中、灵活、高效的数据存储和分析平台。这种架构使得结构化与非结构化数据能够在同一环境中无缝整合,从而消除了数据孤岛现象并提高了数据访问的一致性。同时,得益于云技术,湖仓一体具备了卓越的弹性和可扩展性,轻松应对数据的爆炸式增长。而数据湖的经济存储方式和数据仓库的高速查询性能的结合,进一步确保了企业在大数据处理上的成本效益。

在这样的背景下,使用 Amazon MWAA 基于 Amazon S3,Amazon Glue,Amazon Redshift,DBT 构建 data pipeline,并实现自动化的端到端的数据 ETL 处理,数据建模,以及数据可视化成为一种比较常见的架构实现方式。如下图所示,整个架构实现包括三个组成部分:第一部分,通过 Amazon Glue 实现数据从 data source 到 data staging 再到 data lake。第二部分,通过 DBT 基于Amazon Redshift 进行数据建模。第三部分,通过 Amazon MWAA 实现对 Amazon Glue 和 DBT 的自动化调度。

3bf534e49ebf57ae7fd5c2c46bf0188d.png

如本文开头所述,在这样的架构设计下,数据血缘的收集是非常重要的,同时也面临着比较大的挑战。为了解决这个问题,本文采取了分段搜集,再进行数据血缘合并以及可视化呈现。其中通过 Amazon Glue 运行数据 ETL 的部分,采用了 Spline 进行数据血缘的收集,使用 DBT 在 Amazon Redshift 数据建模的部分,通过 DBT 的 Document 功能获取了血缘数据,数据血缘的合并以及可视化,在图数据库 Amazon Neptune 中完成。

d75ffe4787ccec95e661da0330fa0d4f.png

什么是 Spline?

Spline 即 Spark Lineage,是一个专注 Spark 的数据血缘追踪工具,Spline 的目标是创建一种简单且高效的方法捕获 Spark 血缘,同时提供 API,方便第三方去扩展和开发。

Spline 在架构上可以分为四部分:

  • Spline Server

  • Spline Agent

  • ArangoDB

  • Spline UI

Spline Server 是 Spline 的核心。它通过 producer api 接收来自 agent 的血缘数据,并将其存储在 ArangoDB 中。另一方面,它为读取和查询血缘数据提供了 Consumer API。消费者 API 由 Spline UI 使用,但也可以由第三方应用程序使用。

Spline Agent 从数据转换管道中捕获沿血缘和元数据,并通过使用 HTTP API(称为 Producer API),以标准格式将其发送到 Spline server,最终血缘数据被处理并以图的形式存储,并且可以通过另一个 REST API(称为 Consumer API)访问。

ArangoDB 是一个原生多模型数据库,兼有 key/value 键/值对、graph 图和 document 文档数据模型,提供了涵盖三种数据模型的统一的数据库查询语言,并允许在单个查询中混合使用三种模型。基于其本地集成多模型特性,您可以搭建高性能程序,并且这三种数据模型均支持水平扩展。

Spline UI 是可视化渲染数据血缘的 endpoint,可以按 application 绘制作业的表血缘,字段血缘,以及每一个 stage 的输入输出 schema。

什么是 DBT?

DBT(Data Build Tool)是一个开源软件,用于转换和加载数据仓库中的数据。它允许数据工程师和分析师编写、维护和测试 SQL 查询,从而实现数据的转换和建模。DBT 提供了一个框架,使用户能够使用版本控制、测试和文档化来管理 SQL 代码。它与现代云数据仓库如 Snowflake、EMR 和 Redshift 等紧密集成,使得数据团队可以更加高效地进行数据转换和分析。DBT 的主要目标是将数据从源系统转换为易于分析的结构,同时确保数据的质量和准确性。

什么是 Neptune?

Amazon Neptune 是亚马逊云科技发布的一款托管图数据库产品,它支持流行的图模型,如属性图和 W3C 的 RDF,以及相应的查询语言,如 Apache TinkerPop 的 Gremlin、openCypher 和 SPARQL。Neptune 旨在为高度连接的数据集构建查询,提供高性能的图模型处理。它与其他亚马逊云科技产品如 Amazon S3、Amazon EC2 和 Amazon CloudWatch 等紧密集成,确保数据安全和高效处理。

在本方案中,Spline 的血缘数据保存在 ArangoDB 的 Collection 中,DBT 的血缘数据保存在 manifest.json 中。由于 ArangoDB 是一种图数据库,并且遵循了和图数据库 Amazon Neptune 不同的协议,使用了和 Amazon Neptune 不同的数据结构,而且目前没有工具可以实现 ArangoDB 到 Amazon Neptune 的直接数据导入,因此本方案通过数据解析将 ArangoDB 的 Collection 和 DBT 的血缘数据进行转换,生成中间文件后,在 Amazon Neptune 图数据库进行了数据血缘的合并。

方案介绍

1、 Spline 搭建

1)我们采用在 EC2 上以 docker compose 的方式容器化部署 Spline,需提前安装好 Docker 和 Compose。也可以参考这篇亚马逊云科技博客中介绍的在亚马逊云上部署 Spline 的详细例子。

  • 博客链接:

    https://aws.amazon.com/cn/blogs/china/using-spline-to-collect-spark-data-kinship-practice/?nc1=h_ls

部署完成后,通过 Amazon Glue 构建一个 Job,启动 Spline UI 查看血缘数据,我们看到 Spline 分为 Execution Events,Data Sources,Execution Plans 几个部分。

8158cb23ba4c0aa30389c4656957ae69.png

2)点击一个测试生成的 Execution event,可以看到 Spline 采集的数据血缘 DAG 图。

2124f35695f24073ffd1c2e2ee305bdc.png

3)测试场景的数据最终会从 Amazon S3 的 sales_dl 目录写入 Amazon Redshift 的 sales 表,由于 Spline 和 Amazon Redshift 集成存在一些限制,生成的血缘数据无法直接看到目标表名。这里考虑到 Amazon S3 在向 Amazon Redshift 写入数据时,会先写入到一个临时目录,通过这个特点进行数据解析获取到了完整的数据血缘信息。

98f367fc01df54200da9d91064249652.png

2、 ArangoDB 数据结构以及数据解析

Spline 每次生成数据血缘时,会向 ArangoDB 写入一条 Log 信息,并保存在 22 个 collection 中,如下图所示:

442aef48113078e577640df7b7adfb9f.png

通过数据解析 ArangoDB 的 collection 之间的数据关系,得到在 Spline 中看到的数据血缘信息。在本示例中,根据业务场景的需要,使用了其中的 operation 和 executionPlan 两个 collection 。本方案不着重介绍如何读取 ArangoDB,为方便演示,暂时直接把 json 数据保存成文件后进行解析,具体请参考文件 operation.json 和 executionPlan.json。

  •  operation.json

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/arangodb/operation.json

  • executionPlan.json

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/arangodb/executionPlan.json

通过数据解析在 ArangoDB 的 executionPlan 文件中获取与 Glue Job 对应的唯一的 appName,该 appName 会根据业务场景的不同,对应到 Spline 的一条或者多条 Execution event。找到相互关联的 Execution event,并通过数据解析在 ArangoDB 的 operation 文件中获取数据的上下游关系。最后,通过 Amazon S3 的文件存储路径,判断 Amazon S3 写往 Amazon Redshift 的数据血缘,生成中间文件 spline_lineage_map.json,供 Amazon Neptune 进行数据血缘合并。本示例中的中间文件 spline_lineage_map.json 参考。

  •  spline_lineage_map.json 参考:

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/spline/spline_lineage_map.json.json

import json
import osdef fetch_target_ids(execution_plan_path, target_name):target_ids = []with open(execution_plan_path, 'r') as f:execution_plans = json.load(f)for plan in execution_plans:if plan.get('name') == target_name:target_ids.append(plan['_id'])print(f"Found target ID: {plan['_id']}")return target_idsdef filter_operations(operation_path, target_ids):filtered_operations = []with open(operation_path, 'r') as f:operations = json.load(f)for operation in operations:if operation.get('_belongsTo') in target_ids and operation.get('type') in ['Read', 'Write']:filtered_operations.append(operation)print(f"Filtered operation: {operation}")return filtered_operationsdef generate_and_transform_result_dict(filtered_operations):new_data = {'lineage_map': {}}read_file_name, write_file_name = None, None  read_belongs_to, write_belongs_to = None, None  for operation in filtered_operations:belongs_to = operation.get('_belongsTo')operation_type = operation.get('type')if operation_type == 'Read':input_source = operation.get('inputSources', [])[0] if operation.get('inputSources') else Noneread_file_name = os.path.basename(input_source) if input_source else Noneread_belongs_to = belongs_to  elif operation_type == 'Write':output_source = operation.get('outputSource')write_file_name = os.path.basename(output_source) if output_source else Nonewrite_belongs_to = belongs_to  if read_file_name and write_file_name and read_belongs_to == write_belongs_to:if read_file_name not in new_data['lineage_map']:new_data['lineage_map'][read_file_name] = []new_data['lineage_map'][read_file_name].append(write_file_name)return new_datadef fetch_redshift_table(filtered_operations, new_data):redshift_table = Nonefor operation in filtered_operations:output_source = operation.get('outputSource', '')if 'redshift' in output_source:redshift_table = output_source.split('/')[-2]  print(f"Redshift table extracted from outputSource: {redshift_table}")if redshift_table:last_data_flow_file = Nonefor key in reversed(list(new_data['lineage_map'].keys())):if new_data['lineage_map'][key]:last_data_flow_file = new_data['lineage_map'][key][-1]breakif last_data_flow_file:new_key = f"{last_data_flow_file}" new_data['lineage_map'][new_key] = [redshift_table]          if __name__ == "__main__":execution_plan_path = "/path/to/executionPlan.json"operation_path = "/path/to/operation.json"target_name = 'Your appName in executionPlan.json'target_ids = fetch_target_ids(execution_plan_path, target_name)filtered_operations = filter_operations(operation_path, target_ids)new_data = generate_and_transform_result_dict(filtered_operations)fetch_redshift_table(filtered_operations, new_data)  with open("/path/to/spline_lineage_map.json", 'w') as f:json.dump(new_data, f, indent=4)print(f"New JSON data has been written to /path/to/spline_lineage_map.json")

左滑查看更多

3、DBT 数据血缘解析

上述 Amazon Glue 作业执行后会将处理好的数据写入到 Amazon Redshift 的 public.sales 表,DBT 项目采用 sales 表和 event 表作为数据源进行后续的建模,最终生成 top_events_by_sales 表,DBT 原生的数据血缘参考如下:

fb560528ac9fc548850b13ac4db75d34.png

运行以下命令可为 DBT 项目生成文档,DBT 项目下的 target 目录中的 manifest.json 文件存储了数据血缘相关信息,本示例中 manifest.json 参考。

dbt docs generate

可以通过解析 manifiest.json 文件中的 parent_map 或者 child_map 还原 DBT 的数据血缘,下面的代码示例解析 child_map 并生成中间文件 dbt_lineage_map.json 文件来描述 DBT 数据血缘。

  • manifest.json 参考:

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/dbt/manifest.json

  • dbt_lineage_map.json:

    https://github.com/Honeyfish20/data-lineage-demo/blob/main/dbt/dbt_lineage_map.json

import jsondbt_sources = {}
dbt_models = {}
child_map = {}
lineage_map = {}def get_node_name(node_name):if node_name.startswith("source"):return dbt_sources[node_name]["name"]  if node_name.startswith("model"):return dbt_models[node_name]["name"]with open("manifest.json") as f:data = json.load(f)dbt_sources = data["sources"]
dbt_models = data["nodes"]
child_map = data["child_map"]for item in child_map:parent_name = get_node_name(item)child_list = []for i in range(len(child_map[item])):child_name = get_node_name(child_map[item][i])child_list.append(child_name)if len(child_list) > 0:lineage_map[parent_name] = child_listdbt_lineage_map["lineage_map"] = lineage_mapwith open('dbt_lineage_map.json', 'w') as f:content = json.dumps(dbt_lineage_map)f.write(content)

左滑查看更多

4、 将 Spline 和 DBT 的数据血缘

合并到 Amazon Neptune


解析本方案中前面步骤生成的中间文件,即 Spline 和 DBT 的数据血缘文件 spline_lineage_map.json 和 dbt_lineage_map.json,将两端的数据血缘插入 Amazon Neptune 进行拼接。代码示例参考如下:

from gremlin_python.process.anonymous_traversal import traversal
from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection
from gremlin_python.process.traversal import Tdef build_data_lineage(data_lineage_map):for node in data_lineage_map:if not g.V().hasLabel('lineage_node').has('node_name',node).hasNext():g.addV('lineage_node').property('node_name', node).next()for i in range(len(data_lineage_map[node])):child_node = data_lineage_map[node][i]if not g.V().hasLabel('lineage_node').has('node_name',child_node).hasNext():g.addV('lineage_node').property('node_name', child_node).next()g.V().has('node_name', node).addE('lineage_edge').property('edge_name',' ').to(__.V().has('node_name',child_node)).next()connection = DriverRemoteConnection('wss://{neptune cluster endpoint}:8182/gremlin', 'g')
g = traversal().withRemote(connection)with open("spline_lineage_map.json") as f:spline_lineage_map = json.load(f)with open("dbt_lineage_map.json") as f:dbt_linage_map = json.load(f)build_data_lineage(spline_lineage_map["lineage_map"])
build_data_lineage(dbt_lineage_map["lineage_map"])remoteConn.close()

左滑查看更多

最后启动 Amazon Neptune Notebook,可视化查询最终合并好的完整的数据血缘图:

%%gremlin -d node_name -de edge_name
g.V().outE().inV().path().by(elementMap())

左滑查看更多

查询效果如下:

caf97b58070b2d689143de4e1ff4be62.png

后期展望

本方案从技术角度提供了集成 Spline 和 DBT 数据血缘的解决方案以及原型验证,在实际环境中应用此方案需要在此基础上引入工程化的能力:

  • 1、Spline 的数据血缘存储在 ArangoDB 中,DBT 数据血缘文件存储在项目路径的 target 目录中,即上面提到的 manifest.json 文件,通常会通过 DataOps 发布到 Amazon S3 上。Amazon MWAA 作为此方案的顶层调度框架,Amazone Glue 和 DBT 作业执行完成后,可以实现额外的任务读取 ArangoDB 和 S3 文件,结合本方案中的示例代码,实现两端数据血缘的自动化集成。

  • 2、在实际场景中,可能存在多个环境,如开发、测试、生产等,此时可以为不同环境创建单独的 Amazon Neptune 实例进行环境隔离。同时在同一个环境中,如果有多个 Amazon MWAA 调度作业,在一些极端的情况下,这些作业中可能存在部分相同的上下游结点。此时在同一个环境中写入数据血缘时,可考虑根据 Spline 在 ArangoDB 生成的 appName 和最新的时间查询出当前 DAG 执行后的血缘数据,当和 DBT 进行数据血缘合并时,利用全局标识比如 Amazon MWAA 的 DAG 名称等信息作为图数据库的结点属性,使得后续能够灵活的查询出符合业务实际情况的数据血缘关系图。

  • 3、Spline 和 DBT 原生的数据血缘信息中,都包含数据血缘结点的类型,如文件、Table、View 等。在代码解析过程中,也可以将结点类型提取到临时的中间 Json 文件中,将结点类型作为 Label 写入到 Amazon Neptune 中,从而实现更加灵活的查询,以及更好的可视化效果,如一些主流的可视化查询工具,会根据结点 Label 显示为不同的颜色加以区分。

  • 4、在复杂的业务场景下,Amazon Glue job 会在 Spline 会生成更多的 execution plan,并且每一个 execution plan 的数据关系 ,也会更加复杂,会产生更多的分支,呈现出更为复杂的树形结构,这种情况下,则需要考虑使用更多 ArangoDB 的 collation 文件,进行数据解析,包括使用 collection 文件 follows,去更加精准的判断每一个 execution plan 中的 operation 不同的 action 之间的执行先后次序,以及使用 collection 文件 attribute,通过不同的 execution Plan 的数据上下游之间的字段关系,解析出数据血缘。

  • 5、Amazon S3 向 Amazon Redshift 的数据写入有多种方式,可以基于 Dynamic Frame 的方式,也可以使用 Spark Redshift connector,Spline 是 Spark 的一个组件,使用 Spark Redshift connector 或许可以提供更好的兼容性,在真实的场景中,Amazon Glue 从 Amazon S3 向 Amazon Redshift 中写入数据的场景也会更为复杂,未来可以尝试基于 Amazon Glue 4.0 使用 Spark Redshift connector 实现 Amazon S3 向 Amazon Redshift 的数据写入,收集更为丰富的数据血缘信息。

本篇作者

22729348389de35f07258a2aa35321b8.jpeg

吴楠

亚马逊云科技解决方案架构师,负责面向跨国企业客户的云计算方案架构咨询和设计,客户覆盖医疗,零售等行业。

70a3bf908ecf3078b4aa89c707be3107.jpeg

孙大木

亚马逊云科技资深解决方案架构师,负责基于亚马逊云科技云计算方案架构的咨询和设计,在国内推广亚马逊云科技云平台技术和各种解决方案。

fe6f20e60f98c0ec4284a550ffdc2a6e.gif

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

11fd75ee5c9387bfc70d1f839f8a77bb.gif

听说,点完下面4个按钮

就不会碰到bug了!

cba7e9f6145cbbb2f879844c638386f8.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/127884.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS(二)—— 初识ArkTS开发语言(上)之TypeScript入门

前言 Mozilla创造了JS,Microsoft创建了TS,而Huawei进一步推出了ArkTS。因此在学习使用ArkTS前,需要掌握基本的TS开发技能。 ArkTS介绍 ArkTS是HarmonyOS优选的主力应用开发语言。它在TypeScript(简称TS)的基础上&am…

奇富科技引领大数据调度革命:高效、稳定、实时诊断

日前,在世界最大的开源基金会 Apache旗下最为活跃的项目之一DolphinScheduler组织的分享活动上,奇富科技的数据平台专家刘坤元应邀为国内外技术工作者献上一场题为《Apache DolphinScheduler在奇富科技的优化实践》的精彩分享,为大数据任务调…

历年网规上午真题笔记(2015年)

解析: 变更控制为“问题识别”——“问题分析与变更描述”——“变更分析与成本计算”——“变更实现”——“修改后的需求” 自动化工具能够帮助变更控制过程更有效地运作,能有效收集、存储、管理变更,工具应该具备的特征如下: 可定义变更请求中的数据可定义变更请求生命…

云原生环境下JAVA应用容器JVM内存如何配置?—— 筑梦之路

Docker环境下的JVM参数非定值配置 —— 筑梦之路_docker jvm设置-CSDN博客 之前简单地记录过一篇,这里在之前的基础上更加细化一下。 场景说明 使用Java开发且设置的JVM堆空间过小时,程序会出现系统内存不足OOM(Out of Memory)的…

基于SSM的餐饮掌上设备点餐系统

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

Java,面向对象,抽象类和抽象方法(abstract的使用)

关于抽象类和抽象方法的使用,以Person和student和Teacher为例,若Student类和Teacher继承于Person类,老师和学生都有Person的特征。在一个班级里,只需要创建老师和学生的实例,并不需要创建Person的实例。关于Person的方…

OpenAI将推出ChatGPT Plus会员新功能,有用户反馈将支持上传文件和多模态

🦉 AI新闻 🚀 OpenAI将推出ChatGPT Plus会员新功能,有用户反馈将支持上传文件和多模态 摘要:OpenAI为ChatGPT Plus会员推出了一些新功能,包括上传文件、处理文件和多模态支持。用户不再需要手动选择模式,…

学习使用php实现汉字验证码

学习使用php实现汉字验证码 <?php //开启session &#xff0c;方便验证 session_start(); //创建背景画布 $image imagecreatetruecolor(200, 60); $background imagecolorallocate($image, 255, 255, 255); imagefill($image, 0, 0, $background);//创建背景画布 for ($…

HBase理论与实践-基操与实践

基操 启动&#xff1a; ./bin/start-hbase.sh 连接 ./bin/hbase shell help命令 输入 help 然后 <RETURN> 可以看到一列shell命令。这里的帮助很详细&#xff0c;要注意的是表名&#xff0c;行和列需要加引号。 建表&#xff0c;查看表&#xff0c;插入数据&#…

Android开发知识学习——Kotlin进阶

文章目录 次级构造主构造器init 代码块构造属性data class相等性解构Elvis 操作符when 操作符operatorLambda循环infix 函数嵌套函数注解使用处目标函数简化函数参数默认值扩展函数类型内联函数部分禁用用内联具体化的类型参数抽象属性委托属性委托类委托 Kotlin 标准函数课后题…

Docker 多阶段构建的原理及构建过程展示

Docker多阶段构建是一个优秀的技术&#xff0c;可以显著减少 Docker 镜像的大小&#xff0c;从而加快镜像的构建速度&#xff0c;并减少镜像的传输时间和存储空间。本文将详细介绍 Docker 多阶段构建的原理、用途以及示例。 Docker 多阶段构建的原理 在传统的 Docker 镜像构建…

diffusers-Tasks

https://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generationhttps://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generation1.Unconditional image generation 无条件图像生成是一个相对简单的任务。模型仅生成图像&…

能源化工过程-故障诊断数据集初探-田纳西-伊斯曼过程数据集

1. 田纳西-伊斯曼过程(TE)数据集简介 整个TE数据集由训练集和测试集构成,TE集中的数据由22次不同的仿真运行数据构成,TE集中每个样本都有52个观测变量。d00.dat至d21.dat为训练集样本,d00_te.dat至d21_te.dat为测试集样本。d00.dat和d00_te.dat为正常工况下的样本。d00.d…

如何开始开发一个跑腿App系统?

1. 确定需求和功能规划 开始开发之前&#xff0c;需明确系统所需的基本功能&#xff0c;包括用户注册、登录、下单、配送员匹配、订单跟踪等。这些功能需要在系统设计之初明确。 2. 技术选型 选择适合的技术栈。前端可以使用框架如React、Vue.js&#xff0c;后端可选择Node…

创新工具箱!重塑手机页面原型设计体验

在2024年&#xff0c;随着移动设备的普及和用户对移动体验的要求不断提升&#xff0c;手机页面原型设计工具变得越来越重要。在这篇文章中&#xff0c;我将为您推荐几款在2024年非常流行且值得一试的手机页面原型设计工具。 Pixso Pixso是一款基于云端的协作设计工具&#xf…

【已解决】PPT不能转换成PDF文档怎么办?

PPT可以转换成PDF文档&#xff0c;只需要点击PPT菜单页面中的【文件】选项&#xff0c;再点击【导出】即可转换&#xff0c;如果转换时发现【导出】选项不可选&#xff0c;无法完成转换怎么办&#xff1f;以下3种方法可以试试&#xff01; 出现上面这种情况&#xff0c;我们可以…

模糊C均值聚类(FCM)python

目录 一、模糊C均值聚类的原理 二、不使用skfuzzy的python代码 三、 使用skfuzzy的python代码 一、模糊C均值聚类的原理 二、不使用skfuzzy的python代码 import numpy as np import random import matplotlib.pyplot as plt plt.rcParams[font.sans-serif][SimHei] plt.r…

二叉树问题——前/中/后/层遍历问题(递归与栈)

摘要 博文主要介绍二叉树的前/中/后/层遍历(递归与栈)方法 一、前/中/后/层遍历问题 144. 二叉树的前序遍历 145. 二叉树的后序遍历 94. 二叉树的中序遍历 102. 二叉树的层序遍历 103. 二叉树的锯齿形层序遍历 二、二叉树遍历递归解析 // 前序遍历递归LC144_二叉树的前…

Linux的test测试功能

测试文件名的类型&#xff0c;文件是否存在&#xff0c; 文件的权限检测 文件之间的比较 两个整数之间的比较 判断字符串数据 多重条件判定 一个一个来&#xff0c;这个有点多&#xff0c;不过比较有意思&#xff0c;来代码 案例1&#xff0c;判断文件是否存在&#xff…

超声波俱乐部分享:百度世界大会点燃AI创业者新希望

10月22日&#xff0c;2023年第十三期超声波俱乐部内部分享会在北京望京举行。本期的主题是&#xff1a;百度世界大会点燃AI创业者新希望。 到场的嘉宾有&#xff1a;超声波创始人杨子超&#xff0c;超声波联合创始人、和牛商业创始人刘思雨&#xff0c;中国国际经济交流中心研…