2014年亚太杯APMCM数学建模大赛A题无人机创造安全环境求解全过程文档及程序

2014年亚太杯APMCM数学建模大赛

A题 无人机创造安全环境

原题再现

  20 国集团,又称 G20,是一个国际经济合作论坛。2016 年第 11 届 20 国集团峰会将在中国召开,这是继 APEC 后中国将举办的另一个大型峰会。此类大型峰会,举办城市甚至举办地周围的城市都会采取严格的措施来为峰会提供保障,尤其是安全领域。举办地地方政府都将投入大量的人力、物力和财力来维持社会秩序以及应对突发事件。
  无人机作为一种高科技产品,逐渐被用于国防和安保领域。现在假设我国政府决定第 11 届 G20 峰会在上海市杨浦区举办,并打算采用无人机对整个杨浦区进行监视。目前的无人机对复杂的外部环境比较鲁棒,能够持续飞行 4 个小时,并且当你策略改变时,无人机携带的复杂控制器可以被立即重新初始化。当地政府要求你们团队完成以下任务:
  计划 1:杨浦区所有的地方都不能脱离监控状态超过 15 分钟,请问至少需要多少架无人机才能达到这一目标?
  计划 2:对于杨浦区而言,有些地点由于其人流量比较大,是相对比较重要的,比如五角场的万达广场、复旦大学周边道路。这样的区域至少每 5 分钟被监测一次,而有些人流量较小的地方,可以多于 20 分钟被监测一次。请问你至少需要多少无人机来满足上述的条件?
  计划 3:假设所有的区域都是同等重要的,都应该保持有规律地监测,但是由于发生故障,30%的无人机无法使用了。此时,你的监测计划可以提供多大的监测范围?

整体求解过程概述(摘要)

  本文根据杨浦区无人机监控的三个规划要求,对无人机轨迹和监控区域进行了优化设计。该方案建立了基于遗传算法的无人机最优路径模型、无人机监控区域规划模型和模拟退火算法,然后将两个模型相结合,进行分析求解。
  为了规划a,本文首先分析了无人机摄影测量系统的具体参数,得出无人机监测面积为0.6849km2。同时,通过对图像的处理,将问题简化为满足无人机监控飞行路径节点和路径约束的问题。根据方案a,发现该问题属于全局最优搜索问题。因此,本文引入并使用遗传算法来解决这个问题。基于遗传算法,建立了无人机最优路径模型。然后借助MATLAB计算出无人机的最短飞行路径长度为209.0776km,通过物理运动学公式将无人机的数量转换为至少需要9架,这满足了杨浦地区从监测状态到各地不超过15分钟的条件。
  本文提取了杨浦区2012年能够反映街道交通统计年鉴数据的人口密度进行聚类分析。根据聚类结果、街道和人口密度,将本文划分为大人口密度、中等人口密度和小人口密度三级区域。接下来为每一级设计有针对性的区域无人机监控解决方案。同时,分析了该问题属于局部最优搜索。因此,本文选择了一种启发式随机搜索算法——模拟退火算法。并建立了基于模拟退火算法的无人机区域规划监控模型。最后,本文计算出每一级区域需要无人机的数量分别为6架、4架和1架,可以得出这样的结论:在人口容量为约束条件下,杨浦区监测区所有区域都需要无人机。
  根据方案c,在分析问题后,问题的解决方案基于方案a、b的核心。首先,根据计划a所需的无人机数量,本文计算出计划c只有6次无人机行动。利用基于遗传算法的无人机最优路径模型,计算出无人机在15分钟内的最大监测面积为28.66km2,这是基于监测面积的最大范围。根据杨浦区实际地形图的基本地形,初始化六条规则。然后利用基于模拟退火算法的无人机监测区域规划模型,得到6个无人机监测区位置图及相应的总监测范围最大面积占杨浦区总面积的66.94%。

模型假设:

  (1) 假设无论杨浦贫困人口的地区分布在每一条街上,每一条街的人口密度都是一样的

  (2) 无人机飞行轨迹的二维无限平面图形区域接近人员流动水平的实际需要监控区域的范围;

  (3) 无人机时刻监测范围的区域差距可以忽略不计。

问题分析:

  本文基于通用无人机监测上海杨浦区11日在G20峰会上设定的三种场景,结合通用无人机摄影测量系统系数和杨浦区面积、边界等实际情况,初步分析了飞机数量和无人机对杨浦区每架飞机所需飞行时间的全面监控,可能为进一步深入研究和分析各种方案提供了逻辑依据。
  基本思路

  (1) 视觉摄像机焦距与面积的关系

  视觉相机焦距与视角之间存在一定的关系。传统尺寸的35mm胶片相机,35mm是胶片的宽度(包括穿孔部分),35mm胶片的感光面积为36x24mm,转换为数码相机,对角线长度越近为43.2mm,表面的CCD/CMOS标尺在数码单反相机中越大,很多都接近35mm胶片感光CCD/CMOS尺寸。

  (2) 航空摄影高度的确定

  显示相机焦距与面积的关系,航空摄影确定飞行高度的地面分辨率航空摄影(GSD)取决于飞行高度,公式为:
在这里插入图片描述
  3) 本文在50毫米的无人机摄影测量系统中选择了相机镜头,因为无人机摄影图像要用来制作成1:2000比例的地图数字产品(DEM、DOM、DLG),地面分辨率的航空图像(GSD)应该是20厘米,结合上述理论,通过数值计算得到相应的GSD飞行高度为1100m。无人机监测范围半径:
在这里插入图片描述
  方案1的分析方法
  根据材料信息,目前无人机在复杂的外部环境中也持续了四个小时的飞行,由于以上对无人机摄影测量系统的参数选择、分析和计算,监控过程将监控获取的图像转化为数字产品,是镜头焦距为50毫米的无人机在实际监测中的飞行高度h=1100米,监测面积为0.6849平方公里,已知在上海杨浦区的区域面积为60.61平方公里,略估算一架无人机在飞行初期完成一个杨浦区所需的时间为1小时37。614分钟,初步估计所需的无人机数量为8架或9架。进一步分析问题,在所有与杨浦区交会的前提下,不从监测状态出发超过15分钟,至少配备一架无人机,以确保第十一届二十国集团峰会的顺利召开,本文将问题转化为优化每架无人机的飞行路径,采用局部最优全局最优的原则,即:,通过运用遗传算法(ga)计算得出无人机监测整个杨浦区所有区域的最短路径,通过路径长度和无人机飞行速度之间的运动学公式转换原理,得出无人机数量至少需要

  方案2分析方法
  根据总体人口分布不均的特点,十一届二十国集团峰会期间,杨浦区周边交通点位的位置和环境发生了变化,对存在安全隐患的溪流所在地人口较为稀少,必须对溪流所在地进行更多的安全监控。11日G20峰会在安全监测计划2中要求对相对较大区域的交通至少每5分钟进行一次监测,对相对较小区域的交通一次可监测20分钟以上,有针对性地加强区域安全监测可以有效保障11日G20峰会的顺利召开。方案2不同于方案1,加入交通是无人机路径规划的一个可变约束条件,监测区域人口在一般人口密度下可以反应交通状况,本文首先对杨浦区各街道的人口密度进行聚类分析,杨浦区根据人口密度分为三个层次,最大人口密度控制的无人机至少每5分钟监测一次,人口密度较大的区域控制无人机距离监测状态不到15分钟,而人口密度较小的区域控制无人人机监测一次可以超过20分钟;在第一个方案的基础上进行了无人机最优控制路径轨迹的研究,以二维平面图为初始化图形,分析、研究并利用模拟退火算法的核心思想,在满足不同分段的人口流动水平的前提下,监测时间间隔,通过初始化图形来填充每个流量级别的区域,得出交通密度区域所需的无人机数量,最后将每个区域的数量相加,即得到至少需要规划的无人机的数量

  方案3的分析方法
  将所有区域识别为同等重要区域,所有区域距离监测状态不超过15分钟,处理方案1的处理问题相同,差异是由于故障,导致30%的无人机已经无法使用,是根据无人机所需数量计划1计算,只提供6架无人机监视杨浦区;6无人机如何使监控区域最大,处理逻辑与方案2类似,基于无人机15分钟即可监控最大区域,基于杨浦区地图形状,初始化6个形状,在优化的基础上仍然使用模拟退火算法,将六个基本图形之间的重叠面积尽可能小,并定位到杨浦区中心,最后计算出六个基本形状覆盖面积的大小,杨浦区的总面积只有70%的无人机监测可以提供最大的监测范围。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
G=G.*1.5;
jin=[1 2 3 5 44 51 61 63 62 57 38 31];
bj=zeros(1,63);
while(1)
s=0;
for i=1:1:63if bj(i)>0continue;elses=i;fprintf('%d',s);bj(s)=1;break;end
end
if s==0break;
end
time=0;
while (1)min=99;minx=0;for i=1:1:63if G(s,i)~=0 && G(s,i)*(1+bj(i))<min && i~=smin=G(s,i)*(1+bj(i));minx=i;endendif time+G(s,minx)<7.5fprintf('->%d',minx);bj(minx)=bj(minx)+1;time=time+G(s,minx);s=minx;else
break;end
end
fprintf('\n');
end
x=zeros(1,4);
for i=1:1:63switch T(i)case 5a(1,x(1)+1)=i;x(1)=x(1)+1;case 12a(2,x(2)+1)=i;x(2)=x(2)+1;case 18a(3,x(3)+1)=i;x(3)=x(3)+1;case 25a(4,x(4)+1)=i;x(4)=x(4)+1;end
end
bj=zeros(1,63);
n=size(G,1);
for i=1:1:nfor j=1:1:nif i~=j && G(i,j)==0G(i,j)=inf;endif G(i,j)==1.571*1.5% G(i,j)=inf;end
end
end
D=G;
for i=1:1:nfor j=1:1:nR(i,j)=j;end 
end 
for k=1:n
for i=1:n for j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);R(i,j)=R(i,k);end end end 
end 
while(1)for i=1:1:4s=0;for j=1:1:x(i)if bj(a(i,j))==0s=a(i,j);bj(a(i,j))=bj(a(i,j))+1;t=i;fprintf('%d',s);break;endendif s~=0break;endendif s==0break;endtime=0;tt=T(s)/2;if t==1min=inf;minx=0;for j=1:1:x(i)if time+D(s,a(i,j))<tt && bj(a(i,j))==0 && 
D(s,a(i,j))<min && a(i,j)~=smin=D(s,a(i,j));
minx=a(i,j);endif minx~=0break;
elsecontinue;endendif minx~=0time=time+D(s,minx);ttt=s;while (ttt~=minx)fprintf('-->%d',R(ttt,minx));ttt=R(ttt,minx);bj(ttt)=bj(ttt)+1;end s=minx;endendq=0;while time<ttmin=inf;minx=0;for i=1:1:63if G(s,i)~=inf && T(i)+(25*bj(i))<min && i~=s && 
q*bj(i)<1min=T(i)+(25*bj(i));minx=i;end endif minx==0break;endif time+G(s,minx)<ttif bj(minx)~=0q=1;endfprintf('->%d',minx);bj(minx)=bj(minx)+1;time=time+G(s,minx);s=minx;elsebreak;endend fprintf(' \n');
end
sum(bj)
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/127780.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

prometheus服务发现

Consul简介 ◼ 一款基于golang开发的开源工具&#xff0c;主要面向分布式&#xff0c;服务化的系统提供服务注册、服务发现和配置管理 的功能 ◼ 提供服务注册/发现、健康检查、Key/Value存储、多数据中心和分布式一致性保证等功能 部署 curl -LO https://releases.hashicorp…

保障效率与可用,分析Kafka的消费者组与Rebalance机制

系列文章目录 上手第一关&#xff0c;手把手教你安装kafka与可视化工具kafka-eagle Kafka是什么&#xff0c;以及如何使用SpringBoot对接Kafka 架构必备能力——kafka的选型对比及应用场景 Kafka存取原理与实现分析&#xff0c;打破面试难关 防止消息丢失与消息重复——Kafka可…

opengl基础笔记1

1、opengl运行模式及opengl规范 运行模式&#xff1a;核心模式与立即渲染模式&#xff08;弃用&#xff09; 由于OpenGL的大多数实现都是由显卡厂商编写的&#xff0c;当产生一个bug时通常可以通过升级显卡驱动来解决。这些驱动会包括你的显卡能支持的最新版本的OpenGL&#xf…

YOLOv8将注意力机制融合进入C2f模块

1. 引言 1.1 YOLOv8添加注意力机制方法 yolov8添加注意力机制是一个非常常见的操作&#xff0c;常见的操作直接将注意力机制添加至YOLOv8的某一层之后&#xff0c;这种改进特别常见。 示例如下&#xff1a; 新版yolov8添加注意力机制&#xff08;以NAMAttention注意力机制为例…

鸿蒙问题记录

1、Variables decorated by Prop link, "Consume, and Obiectlink cannot be initialized locally 原因&#xff1a;被装饰器修饰的数据&#xff0c;不能初始化。这个应该是后续版本做了优化。当前使用 DevEco Studio 3.1.1 Release

Web3时代:探索DAO的未来之路

Web3 的兴起不仅代表着技术进步&#xff0c;更是对人类协作、创新和价值塑造方式的一次重大思考。在 Web3 时代&#xff0c;社区不再仅仅是共同兴趣的聚集点&#xff0c;而变成了一个价值交流和创新的平台。 去中心化&#xff1a;超越技术的革命 去中心化不仅仅是 Web3 的技术…

CRM系统如何帮助企业实现管理信息化?

21世纪的今天&#xff0c;企业不重视CRM信息化会导致什么后果&#xff1f;我们先来看这个例子—— 假设有一家中小型电子商务公司&#xff0c;他们销售各种电子产品&#xff0c;如手机、平板、电脑和配件等。在开始使用CRM系统之前&#xff0c;他们的客户数据分散在各个部门的…

Redis高可用解决方案之Redis集群,和Spring Cloud集成实战

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…

HDFS集群环境部署(超级详细!!)

一、部署Hadoop的关键点 1.上传&#xff0c;解压到/export/server,配置软链接 2.修改4个配置文件&#xff0c;workers&#xff0c;hadoop.env.sh&#xff0c;core-stie.xml&#xff0c;hdfs-site.xml 3.SCP分发到root2,root3&#xff0c;并设置环境变量 4.创建数据目录,并修改文…

diffusers-Load adapters

https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adaptershttps://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters 有几种训练技术可以个性化扩散模型&#xff0c;生成特定主题的图像或某些风格的图像。每种训练方法都会产…

【论文阅读笔记】GLM-130B: AN OPEN BILINGUAL PRE-TRAINEDMODEL

Glm-130b:开放式双语预训练模型 摘要 我们介绍了GLM-130B&#xff0c;一个具有1300亿个参数的双语(英语和汉语)预训练语言模型。这是一个至少与GPT-3(达芬奇)一样好的100b规模模型的开源尝试&#xff0c;并揭示了如何成功地对这种规模的模型进行预训练。在这一过程中&#xff0…

inquirer.js——交互式命令行用户界面

一、什么是inquirer.js 1、inquirer.js是一个开源的交互式命令行用户界面&#xff08;CLI&#xff09;库&#xff0c;可以让你轻松地与用户进行交互&#xff0c;获取用户输入并做出相应的处理。它的主要功能是提供了一系列常用的命令行交互界面组件&#xff0c;例如input、con…

单目标应用:进化场优化算法(Evolutionary Field Optimization,EFO)求解微电网优化MATLAB

一、微网系统运行优化模型 微电网优化模型介绍&#xff1a; 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、进化场优化算法EFO 进化场优化算法&#xff08;Evolutionary Field Optimization&#xff0c;EFO&#xff09;由Baris Baykant Alagoz等人于2022年提出&…

系统架构设计之云原生架构

云原生架构 一. 云原生技术介绍二. 传统架构模式 VS 云原生架构模式三. 云原生架构反模式四. 云原生架构设计原则 其它相关推荐&#xff1a; 软考系统架构之案例篇(架构设计相关概念) 系统架构之微服务架构 系统架构设计之微内核架构 鸿蒙操作系统架构 所属专栏&#xff1a;系统…

家政APP开发服务同城预约维修接单管理系统软件小程序

家政服务小程序是一个基于移动端的家政服务平台&#xff0c;为用户提供方便快捷的家政服务。以下是小程序的主要功能&#xff1a; 1. 家政服务内容展示&#xff1a;商家可以在小程序中展示各种家政服务项目&#xff0c;如清洁、保洁、保姆、月嫂、钟点工等。用户可以浏览服务信…

Ansible中的变量及加密

目录 一、变量的设定 二、变量的使用方式 1、在playbook中直接定义变量 2、在文件中定义变量 3、设定主机变量和清单变量 4、目录设定变量 5、用命令覆盖变量 6、使用数组设定变量 7、注册变量 8、事实变量 9、魔法变量 三、JINJA2模板 四、加密控制 1、创建加…

Qt 插件开发详解

1.简介 Qt插件是一种扩展机制&#xff0c;用于将应用程序的功能模块化&#xff0c;并且可以在运行时动态加载和卸载。Qt框架为插件提供了一套标准的接口和管理机制&#xff0c;使得插件的使用和集成变得简单和灵活&#xff0c;通过插件机制&#xff0c;可以将应用程序的功能划…

Maven Repository使用

1.Maven Repository网站 https://mvnrepository.com/https://mvnrepository.com/ 2.查询需要的依赖 3.参考例子 <!-- https://mvnrepository.com/artifact/org.freeswitch.esl.client/org.freeswitch.esl.client --> <dependency> <groupId>org.freesw…

【k8s】资源管理命令-陈述式

一、资源管理介绍 1、资源管理概念 在kubernetes中&#xff0c;所有的内容都抽象为资源&#xff0c;用户需要通过操作资源来管理kubernetes。 //kubernetes的本质就是一个集群系统&#xff0c;用户可以在集群中部署各种服务&#xff0c;起始就是在kubernetes集群中运行一个个…

科技驱动教育!将名师智慧资产固定在系统中

文章目录 每日一句正能量前言未来教育教育趋势一、在线教育&#xff1a;打破时间和空间的限制二、混合式学习&#xff1a;结合线上和线下的优势三、项目式学习&#xff1a;以问题为导向&#xff0c;以项目为载体 科技驱动教育模式在线教育人工智能教育虚拟现实/增强现实教育游戏…