Opencv实现的三次样条曲线(Cubic Spline)插值

1.样条曲线简介

样条曲线(Spline)本质是分段多项式实函数,在实数范围内有: S:[a,b]→R ,在区间 [a,b] 上包含 k 个子区间[ti−1,ti],且有:

a=t0<t1<⋯<tk−1<tk=b(1)

对应每一段区间 i 的存在多项式: Pi:[ti−1,ti]→R,且满足于:

S(t)=P1(t) , t0≤t<t1,S(t)=P2(t) , t1≤t<t2,⋮S(t)=Pk(t) , tk−1≤t≤tk.(2)

其中, Pi(t) 多项式中最高次项的幂,视为样条的阶数或次数(Order of spline),根据子区间 [ti−1,ti] 的区间长度是否一致分为均匀(Uniform)样条和非均匀(Non-uniform)样条。

满足了公式 (2) 的多项式有很多,为了保证曲线在 S 区间内具有据够的平滑度,一条n次样条,同时应具备处处连续且可微的性质:

P(j)i(ti)=P(j)i+1(ti);(3)

其中 i=1,…,k−1;j=0,…,n−1 。

2.三次样条曲线

2.1曲线条件

按照上述的定义,给定节点:

t:z:a=t0z0<t1z1<⋯⋯<tk−1zk−1<tkzk=b(4)

三次样条曲线满足三个条件:

  1. 在每段分段区间 [ti,ti+1],i=0,1,…,k−1 上, S(t)=Si(t) 都是一个三次多项式;
  2. 满足 S(ti)=zi,i=1,…,k−1 ;
  3. S(t) 的一阶导函数 S′(t) 和二阶导函数 S′′(t) 在区间 [a,b] 上都是连续的,从而曲线具有光滑性。

则三次样条的方程可以写为:

Si(t)=ai+bi(t−ti)+ci(t−ti)2+di(t−ti)3,(5)

其中, ai,bi,ci,di 分别代表 n 个未知系数。

  • 曲线的连续性表示为:

Si(ti)=zi,(6)

Si(ti+1)=zi+1,(7)

其中 i=0,1,…,k−1 。

  • 曲线微分连续性:

S′i(ti+1)=S′i+1(ti+1),(8)

S′′i(ti+1)=S′′i+1(ti+1),(9)

其中 i=0,1,…,k−2 。

  • 曲线的导函数表达式:

S′i=bi+2ci(t−ti)+3di(t−ti)2,(10)

S′′i(x)=2ci+6di(t−ti),(11)

令区间长度 hi=ti+1−ti ,则有:

  1. 由公式 (6) ,可得: ai=zi ;

  2. 由公式 (7) ,可得: ai+bihi+cih2i+dih3i=zi+1 ;

  3. 由公式 (8) ,可得:
    S′i(ti+1)=bi+2cihi+3dih2i ;
    S′i+1(ti+1)=bi+1 ;
    ⇒bi+2cihi+3dih2i−bi+1=0 ;

  4. 由公式 (9) ,可得:
    S′′i(ti+1)=2ci+6dihi ;
    S′′i+1(ti+1)=2ci+1 ;
    ⇒2ci+6dihi=2ci+1 ;

    设 mi=S′′i(xi)=2ci ,则:

    A. mi+6dihi−mi+1=0⇒
    di=mi+1−mi6hi ;

    B.将 ci,di 代入 zi+bihi+cih2i+dih3i=zi+1⇒
    bi=zi+1−zihi−hi2mi−hi6(mi+1−mi) ;

    C.将 bi,ci,di 代入 bi+2cihi+3dih2i=bi+1⇒

    himi+2(hi+hi+1)mi+1+hi+1mi+2=6[zi+2−zi+1hi+1−zi+1−zihi].(12)

2.2端点条件

在上述分析中,曲线段的两个端点 t0 和 tk 是不适用的,有一些常用的端点限制条件,这里只讲解自然边界。
在自然边界下,首尾两端的二阶导函数满足 S′′=0 ,即 m0=0 和 mk=0 。

3.三次样条插值类的实现

头文件
/**Cubic spline interpolation class.*
*/#ifndef CUBICSPLINEINTERPOLATION_H
#pragma once
#define CUBICSPLINEINTERPOLATION_H#include <iostream>
#include <vector>
#include <math.h>#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;/* Cubic spline interpolation coefficients */
class CubicSplineCoeffs
{
public:CubicSplineCoeffs( const int &count ){a = std::vector<double>(count);b = std::vector<double>(count);c = std::vector<double>(count);d = std::vector<double>(count);}~CubicSplineCoeffs(){std::vector<double>().swap(a);std::vector<double>().swap(b);std::vector<double>().swap(c);std::vector<double>().swap(d);}public:std::vector<double> a, b, c, d;
};enum CubicSplineMode
{CUBIC_NATURAL,    // NaturalCUBIC_CLAMPED,    // TODO: ClampedCUBIC_NOT_A_KNOT  // TODO: Not a knot
};enum SplineFilterMode
{CUBIC_WITHOUT_FILTER, // without filterCUBIC_MEDIAN_FILTER  // median filter
};/* Cubic spline interpolation */
class CubicSplineInterpolation
{
public:CubicSplineInterpolation() {}~CubicSplineInterpolation() {}public:/*Calculate cubic spline coefficients.- node list x (input_x);- node list y (input_y);- output coefficients (cubicCoeffs);- ends mode (splineMode).*/void calCubicSplineCoeffs( std::vector<double> &input_x,std::vector<double> &input_y, CubicSplineCoeffs *&cubicCoeffs,CubicSplineMode splineMode = CUBIC_NATURAL,SplineFilterMode filterMode = CUBIC_MEDIAN_FILTER );/*Cubic spline interpolation for a list.- input coefficients (cubicCoeffs);- input node list x (input_x);- output node list x (output_x);- output node list y (output_y);- interpolation step (interStep).*/void cubicSplineInterpolation( CubicSplineCoeffs *&cubicCoeffs,std::vector<double> &input_x, std::vector<double> &output_x,std::vector<double> &output_y, const double interStep = 0.5 );/*Cubic spline interpolation for a value.- input coefficients (cubicCoeffs);- input a value(x);- output interpolation value(y);*/void cubicSplineInterpolation2( CubicSplineCoeffs *&cubicCoeffs,std::vector<double> input_x, double x, double &y );/*calculate  tridiagonal matrices with Thomas Algorithm(TDMA) :example:| b1 c1 0  0  0  0  |  |x1 |   |d1 || a2 b2 c2 0  0  0  |  |x2 |   |d2 || 0  a3 b3 c3 0  0  |  |x3 | = |d3 || ...         ...   |  |...|   |...|| 0  0  0  0  an bn |  |xn |   |dn |Ci = ci/bi , i=1; ci / (bi - Ci-1 * ai) , i = 2, 3, ... n-1;Di = di/bi , i=1; ( di - Di-1 * ai )/(bi - Ci-1 * ai) , i = 2, 3, ..., n-1xi = Di - Ci*xi+1 , i = n-1, n-2, 1;*/bool caltridiagonalMatrices( cv::Mat_<double> &input_a,cv::Mat_<double> &input_b, cv::Mat_<double> &input_c,cv::Mat_<double> &input_d, cv::Mat_<double> &output_x );/* Calculate the curve index interpolation belongs to */int calInterpolationIndex( double &pt, std::vector<double> &input_x );/* median filtering */void cubicMedianFilter( std::vector<double> &input, const int filterSize = 5 );double cubicSort( std::vector<double> &input );// double cubicNearestValue( std::vector );
};#endif // CUBICSPLINEINTERPOLATION_H
实现文件(cpp)
/** CubicSplineInterpolation.cpp*/#include "cubicsplineinterpolation.h"void CubicSplineInterpolation::calCubicSplineCoeffs(std::vector<double> &input_x,std::vector<double> &input_y,CubicSplineCoeffs *&cubicCoeffs,CubicSplineMode splineMode /* = CUBIC_NATURAL */,SplineFilterMode filterMode /*= CUBIC_MEDIAN_FILTER*/ )
{int sizeOfx = input_x.size();int sizeOfy = input_y.size();if ( sizeOfx != sizeOfy ){std::cout << "Data input error!" << std::endl <<"Location: CubicSplineInterpolation.cpp" <<" -> calCubicSplineCoeffs()" << std::endl;return;}/*hi*mi + 2*(hi + hi+1)*mi+1 + hi+1*mi+2=  6{ (yi+2 - yi+1)/hi+1 - (yi+1 - yi)/hi }so, ignore the both ends:| -     -     -        0           ...             0     |  |m0 || h0 2(h0+h1) h1       0           ...             0     |  |m1 || 0     h1    2(h1+h2) h2 0        ...                   |  |m2 ||         ...                      ...             0     |  |...|| 0       ...           0 h(n-2) 2(h(n-2)+h(n-1)) h(n-1) |  |   || 0       ...                      ...             -     |  |mn |*/std::vector<double> copy_y = input_y;if ( filterMode == CUBIC_MEDIAN_FILTER ){cubicMedianFilter(copy_y, 5);}const int count  = sizeOfx;const int count1 = sizeOfx - 1;const int count2 = sizeOfx - 2;const int count3 = sizeOfx - 3;cubicCoeffs = new CubicSplineCoeffs( count1 );std::vector<double> step_h( count1, 0.0 );// for m matrixcv::Mat_<double> m_a(1, count2, 0.0);cv::Mat_<double> m_b(1, count2, 0.0);cv::Mat_<double> m_c(1, count2, 0.0);cv::Mat_<double> m_d(1, count2, 0.0);cv::Mat_<double> m_part(1, count2, 0.0);cv::Mat_<double> m_all(1, count, 0.0);// initial step hifor ( int idx=0; idx < count1; idx ++ ){step_h[idx] = input_x[idx+1] - input_x[idx];}// initial coefficientsfor ( int idx=0; idx < count3; idx ++ ){m_a(idx) = step_h[idx];m_b(idx) = 2 * (step_h[idx] + step_h[idx+1]);m_c(idx) = step_h[idx+1];}// initial dfor ( int idx =0; idx < count3; idx ++ ){m_d(idx) = 6 * ((copy_y[idx+2] - copy_y[idx+1]) / step_h[idx+1] -(copy_y[idx+1] - copy_y[idx]) / step_h[idx] );}//cv::Mat_<double> matOfm( count2,  )bool isSucceed = caltridiagonalMatrices(m_a, m_b, m_c, m_d, m_part);if ( !isSucceed ){std::cout<<"Calculate tridiagonal matrices failed!"<<std::endl<<"Location: CubicSplineInterpolation.cpp -> " <<"caltridiagonalMatrices()"<<std::endl;return;}if ( splineMode == CUBIC_NATURAL ){m_all(0)      = 0.0;m_all(count1) = 0.0;for ( int i=1; i<count1; i++ ){m_all(i) = m_part(i-1);}for ( int i=0; i<count1; i++ ){cubicCoeffs->a[i] = copy_y[i];cubicCoeffs->b[i] = ( copy_y[i+1] - copy_y[i] ) / step_h[i] -step_h[i]*( 2*m_all(i) + m_all(i+1) ) / 6;cubicCoeffs->c[i] = m_all(i) / 2.0;cubicCoeffs->d[i] = ( m_all(i+1) - m_all(i) ) / ( 6.0 * step_h[i] );}}else{std::cout<<"Not define the interpolation mode!"<<std::endl;}
}void CubicSplineInterpolation::cubicSplineInterpolation(CubicSplineCoeffs *&cubicCoeffs,std::vector<double> &input_x,std::vector<double> &output_x,std::vector<double> &output_y,const double interStep )
{const int count = input_x.size();double low  = input_x[0];double high = input_x[count-1];double interBegin = low;for ( ; interBegin < high; interBegin += interStep ){int index = calInterpolationIndex(interBegin, input_x);if ( index >= 0 ){double dertx = interBegin - input_x[index];double y = cubicCoeffs->a[index] + cubicCoeffs->b[index] * dertx +cubicCoeffs->c[index] * dertx * dertx +cubicCoeffs->d[index] * dertx * dertx * dertx;output_x.push_back(interBegin);output_y.push_back(y);}}
}void CubicSplineInterpolation::cubicSplineInterpolation2(CubicSplineCoeffs *&cubicCoeffs,std::vector<double> input_x, double x, double &y)
{const int count = input_x.size();double low  = input_x[0];double high = input_x[count-1];if ( x<low || x>high ){std::cout<<"The interpolation value is out of range!"<<std::endl;}else{int index = calInterpolationIndex(x, input_x);if ( index >= 0 ){double dertx = x - input_x[index];y = cubicCoeffs->a[index] + cubicCoeffs->b[index] * dertx +cubicCoeffs->c[index] * dertx * dertx +cubicCoeffs->d[index] * dertx * dertx * dertx;}else{std::cout<<"Can't find the interpolation range!"<<std::endl;}}
}bool CubicSplineInterpolation::caltridiagonalMatrices(cv::Mat_<double> &input_a,cv::Mat_<double> &input_b,cv::Mat_<double> &input_c,cv::Mat_<double> &input_d,cv::Mat_<double> &output_x )
{int rows = input_a.rows;int cols = input_a.cols;if ( ( rows == 1 && cols > rows ) ||(cols == 1 && rows > cols ) ){const int count = ( rows > cols ? rows : cols ) - 1;output_x = cv::Mat_<double>::zeros(rows, cols);cv::Mat_<double> cCopy, dCopy;input_c.copyTo(cCopy);input_d.copyTo(dCopy);if ( input_b(0) != 0 ){cCopy(0) /= input_b(0);dCopy(0) /= input_b(0);}else{return false;}for ( int i=1; i < count; i++ ){double temp = input_b(i) - input_a(i) * cCopy(i-1);if ( temp == 0.0 ){return false;}cCopy(i) /= temp;dCopy(i) = ( dCopy(i) - dCopy(i-1)*input_a(i) ) / temp;}output_x(count) = dCopy(count);for ( int i=count-2; i > 0; i-- ){output_x(i) = dCopy(i) - cCopy(i)*output_x(i+1);}return true;}else{return false;}
}int CubicSplineInterpolation::calInterpolationIndex(double &pt, std::vector<double> &input_x )
{const int count = input_x.size()-1;int index = -1;for ( int i=0; i<count; i++ ){if ( pt > input_x[i] && pt <= input_x[i+1] ){index = i;return index;}}return index;
}void CubicSplineInterpolation::cubicMedianFilter(std::vector<double> &input, const int filterSize /* = 5 */ )
{const int count = input.size();for ( int i=filterSize/2; i<count-filterSize/2; i++ ){std::vector<double> temp(filterSize, 0.0);for ( int j=0; j<filterSize; j++ ){temp[j] = input[i+j - filterSize/2];}input[i] = cubicSort(temp);std::vector<double>().swap(temp);}for ( int i=0; i<filterSize/2; i++ ){std::vector<double> temp(filterSize, 0.0);for ( int j=0; j<filterSize; j++ ){temp[j] = input[j];}input[i] = cubicSort(temp);std::vector<double>().swap(temp);}for ( int i=count-filterSize/2; i<count; i++ ){std::vector<double> temp(filterSize, 0.0);for ( int j=0; j<filterSize; j++ ){temp[j] = input[j];}input[i] = cubicSort(temp);std::vector<double>().swap(temp);}
}double CubicSplineInterpolation::cubicSort( std::vector<double> &input )
{int iCount = input.size();for ( int j=0; j<iCount-1; j++ ){for ( int k=iCount-1; k>j; k-- ){if ( input[k-1] > input[k] ){double tp  = input[k];input[k]   = input[k-1];input[k-1] = tp;}}}return input[iCount/2];
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/127470.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java学习_day07_类的构造器代码块继承封装多态

文章目录 构造器格式注意点使用 代码块格式注意 继承格式注意点 封装包声明包导包注意点 访问修饰符 多态格式注意点代码演示 构造器 Java中每个类都至少有一个构造器&#xff0c;当程序员没有明确编写构造器时&#xff0c;Java编译器会自动为类添加一个无参的构造器。构造器通…

分享一下在微信小程序怎么发送优惠券

在微信小程序中&#xff0c;发送优惠券是一种常见的营销手段&#xff0c;它能够吸引用户购买商品或服务&#xff0c;提高销售业绩和用户忠诚度。本文将介绍在微信小程序中如何发送优惠券&#xff0c;包括优惠券的种类、发放方式、制作和推广等&#xff0c;帮助您更好地利用优惠…

Keep-live 用法

是Vue内置的一个组件&#xff0c;可以使被包含的组件保留状态&#xff0c;或避免重新渲染。 include-字符串或正则表达式&#xff0c;只会匹配的组件会被渲染exclude-字符串或正则表达式&#xff0c;任何匹配的组件都不会被缓存用法注&#xff1a;当组件被exclude匹配&#xff…

沉痛悼念科研分公司

今天上班途中&#xff0c;遇到了上家公司的同事王强。他正准备去体检中心体检。几句寒暄之后&#xff0c;得知他是要入职选煤公司了。 我们所在的公司比较大&#xff0c;总公司下设有几十个分、子公司&#xff0c;我和他曾经在一家子公司——科研分公司。现在的科研分公司解散…

利用Vue2实现印章徽章组件

需要实现的组件效果&#xff1a; 该组件有设置颜色、大小、旋转度数和文本内容功能。 一、组件实现代码 <template><divclass"first-ring"v-bind"getBindValue":class"getStampBadgeClass":style"{ transform: rotate(${rotate}…

前端css介绍

CSS介绍 CSS&#xff08;Cascading Style Sheet&#xff0c;层叠样式表)定义如何显示HTML元素。 当浏览器读到一个样式表&#xff0c;它就会按照这个样式表来对文档进行格式化&#xff08;渲染&#xff09;。 CSS语法 CSS实例 每个CSS样式由两个组成部分&#xff1a;选择器和…

【ArcGIS Pro二次开发】(73):使用NPOI库操作Excel

NPOI是一个开源的C#读写Excel、WORD等微软OLE2组件文档的项目。 NPOI可以在没有安装Office的情况下对Word或Excel文档进行读写操作。 相较于之前使用的Microsoft.Office.Interop.Excel&#xff0c;已经感觉到的优势&#xff0c;一是读写速度较快&#xff0c;虽然小数据量的读…

基于springboot实现游戏分享网站系统项目【项目源码+论文说明】

基于springboot实现游戏分享网站演示 摘要 网络的广泛应用给生活带来了十分的便利。所以把游戏分享管理与现在网络相结合&#xff0c;利用java技术建设游戏分享网站&#xff0c;实现游戏分享的信息化。则对于进一步提高游戏分享管理发展&#xff0c;丰富游戏分享管理经验能起到…

Vue 打包优化之 externals 抽离公共的第三方库

Vue 打包优化之 externals 抽离公共的第三方库

超高真空变温台的真空压力和气氛精密控制解决方案

摘要&#xff1a;针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题&#xff0c;本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制&#xff0c;采用了气体质量流量计实现多…

centos关闭Java进程的脚本

centos关闭Java进程的脚本&#xff0c;有时候服务就是个jar包&#xff0c;关闭程序又要找到进程ID&#xff0c;在kill掉&#xff0c;麻烦&#xff0c;这里就写了个脚本 小白教程&#xff0c;一看就会&#xff0c;一做就成。 1.脚本如下 #!/bin/bash ps -ef | grep java | gre…

GNU ld(链接器)的主要功能

作用&#xff1a; 链接器linker是Bintutils的一种重要工具&#xff0c;负责将编译后的目标文件(.o)合并成一个可执行文件或者共享库。 一、链接器的文件结构可以概括为以下几个关键部分&#xff1a; 输入文件 (Input Files): 输入文件通常是目标文件&#xff08;.o 文件&#…

源码配置nginx,分别编写基于RHEL6、RHEL7的脚本

配置nginx 安装软件 [rootlocalhost ~]# wget https://nginx.org/download/nginx-1.20.2.tar.gz [rootlocalhost ~]# ls 公共 视频 文档 音乐 anaconda-ks.cfg 模板 图片 下载 桌面 nginx-1.20.2.tar.gz创建系统用户 [rootlocalhost ~]# useradd -r -M -s /sbin/nol…

销售人员拒绝CRM系统的原因?如何解决?

尽管如今的CRM客户管理系统已经足够的轻量化&#xff0c;实施起来并不复杂&#xff0c;但还是会被销售团队抱怨&#xff0c;认为CRM系统和他们想象的有很大差距。甚至销售团队根本不理睬新的CRM系统直接拒绝使用。那么&#xff0c;销售人员拒绝CRM系统的原因是什么&#xff1f;…

Midjourney干货篇 - 与AI对话,如何写好prompt

文章目录 1、语法2、单词3、要学习prompt 框架4、善用参数&#xff08;注意版本&#xff09;5、善用模版6、临摹7、垫图 木匠不会因为电动工具的出现而被淘汰&#xff0c;反而善用工具的木匠&#xff0c;收入更高了。 想要驾驭好Midjourney&#xff0c;可以从以下方面出发调整&…

基于springboot实现原创歌曲分享平台系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现原创歌曲分享平台演示 摘要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理平台应运而生&am…

保护听力戴什么耳机比较好?开放式耳机能保护听力吗?

如果想要在保护听力的前提下戴耳机&#xff0c;那么我是推荐戴骨传导耳机的&#xff01;&#xff01;&#xff01; 所谓骨传导即是一种声音传递的方式&#xff0c;跟普通耳机不同的是传统耳机是通过空气将声音通过耳膜以此完成传递&#xff0c;而骨传导耳机的原理是将声音以不同…

网站如何改成HTTPS访问

在今天的互联网环境中&#xff0c;将网站更改成HTTPS访问已经成为了一种标准做法。HTTPS不仅有助于提高网站的安全性&#xff0c;还可以提高搜索引擎排名&#xff0c;并增强用户信任。因此&#xff0c;转换为HTTPS是一个重要的举措&#xff0c;无论您拥有个人博客、电子商务网站…

面试流程之——程序员如何写项目经验

在简历中介绍IT项目经验&#xff0c;你可以遵循以下步骤&#xff1a; 明确项目目标&#xff1a;首先&#xff0c;清晰地阐述项目的目标。这可以是提升某个软件的性能&#xff0c;改进某个系统的用户界面&#xff0c;或者增加某款产品的功能。让读者了解你的工作与项目的整体目…