【机器学习】五、贝叶斯分类

我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。

条件概率是朴素贝叶斯模型的基础

假设,你的xx公司正在面临着用户流失的压力。虽然,你能计算用户整体流失的概率(流失用户数/用户总数)。但这个数字并没有多大意义,因为资源是有限的,利用这个数字你只能撒胡椒面似的把钱撒在所有用户上,显然不经济。你非常想根据用户的某种行为,精确地估计一个用户流失的概率,若这个概率超过某个阀值,再触发用户挽留机制。这样能把钱花到最需要花的地方。

你搜遍脑子里的数据分析方法,终于,一个250年前的人名在脑中闪现。就是“贝叶斯Bayes”。你取得了近一个月的流失用户数、流失用户中未读消息大于5条的人数、近一个月的活跃用户数及活跃用户中未读消息大于5条的人数。在此基础上,你获得了一个“一旦用户未读消息大于5条,他流失的概率高达%”的精确结论。怎么实现这个计算呢?先别着急,为了解释清楚贝叶斯模型,我们先定义一些名词。

  • 概率(Probability)——0和1之间的一个数字,表示一个特定结果发生的可能性。比如投资硬币,“正面朝上”这个特定结果发生的可能性为0.5,这个0.5就是概率。换一种说法,计算样本数据中出现该结果次数的百分比。即你投一百次硬币,正面朝上的次数基本上是50次。

  • 几率(Odds)——某一特定结果发生与不发生的概率比。如果你明天电梯上遇上你暗恋的女孩的概率是0.1,那么遇不上她的概率就是0.9,那么遇上暗恋女孩的几率就是1/9,几率的取值范围是0到无穷大。

  • 似然(Likelihood)——两个相关的条件概率之比,即给定B发生的情况下,某一特定结果A发生的概率和给定B不发生的情况下A发生的概率之比。另一种表达方式是,给定B的情况下A发生的几率和A的整体几率之比。两个计算方式是等价的。

Clipboard Image.png

因为上面在似然当中提到了条件概率,那么我们有必要将什么是条件概率做更详尽的阐述。

如上面的韦恩图,我们用矩形表示一个样本空间,代表随机事件发生的一切可能结果。的在统计学中,我们用符号P表示概率,A事件发生的概率表示为P(A)。两个事件间的概率表达实际上相当繁琐,我们只介绍本书中用得着的关系:

  1. A事件与B事件同时发生的概率表示为P(A∩B),或简写为P(AB)即两个圆圈重叠的部分。

  2. A不发生的概率为1-P(A),写为P(~A),即矩形中除了圆圈A以外的其他部分。

  3. A或者B至少有一个发生的概率表示为P(A∪B),即圆圈A与圆圈B共同覆盖的区域。

  4. 在B事件发生的基础上发生A的概率表示为P(A|B),这便是我们前文所提到的条件概率,图形上它有AB重合的面积比上B的面积。

回到我们的例子。以P(A)代表用户流失的概率,P(B)代表用户有5条以上未读信息的概率,P(B|A)代表用户流失的前提下未读信息大于5条的概率。我们要求未读信息大于5条的用户流失的概率,即P(A|B),贝叶斯公式告诉我们: 

P(A|B)=P(AB)/P(B)

              =P(B|A)*P(A)/P(B)

从公式中可知,如果要计算B条件下A发生的概率,只需要计算出后面等式的三个部分,B事件的概率(P(B)),是B的先验概率、A属于某类的概率(P(A)),是A的先验概率、以及已知A的某个分类下,事件B的概率(P(B|A)),是后验概率

如果要确定某个样本归属于哪一类,则需要计算出归属不同类的概率,再从中挑选出最大的概率

我们把上面的贝叶斯公式写出这样,也许你能更好的理解:

MAX(P(Ai|B))=MAX(P(B|Ai)*P(Ai)/P(B))

而这个公式告诉我们,需要计算最大的后验概率,只需要计算出分子的最大值即可,而不同水平的概率P(C)非常容易获得,故难点就在于P(X|C)的概率计算。而问题的解决,正是聪明之处,即贝叶斯假设变量X间是条件独立的,故而P(X|C)的概率就可以计算为:

P(B|Ai) =P(B1/Ai)*P(B2/Ai)*P(B3/Ai)*.....*P(Bn/Ai) 

如下图,由这个公式我们就能轻松计算出,在观察到某用户的未读信息大于5条时,他流失的概率为80%。80%的数值比原来的30%真是靠谱太多了。

Clipboard Image.png

当然,现实情况并不会像这个例子这么理想化。大家会问,凭什么你就会想到用“未读消息大于5条”来作为条件概率?我只能说,现实情况中,你可能要找上一堆觉得能够凸显用户流失的行为,然后一一做贝叶斯规则,来测算他们是否能显著识别用户流失。寻找这个字段的效率,取决于你对业务的理解程度和直觉的敏锐性。另外,你还需要定义“流失”和“活跃”,还需要定义贝叶斯规则计算的基础样本,这决定了结果的精度。

  • 利用全概率公式的一个例子

朴素贝叶斯的应用不止于此,我们再例举一个更复杂,但现实场景也更实际的案例。假设你为了肃清电商平台上的恶性商户(刷单、非法交易、恶性竞争等),委托算法团队开发了一个识别商家是否是恶性商户的模型M1。为什么要开发模型呢?因为之前识别恶性商家,你只能通过用户举报和人肉识别异常数据的方式,人力成本高且速率很慢。你指望有智能的算法来提高效率。

之前监察团队的成果告诉我们,目前平台上的恶性商户比率为0.2%,记为P(E),那么P(~E)就是99.8%。利用模型M1进行检测,你发现在监察团队已判定的恶性商户中,由模型M1所判定为阳性(恶性商户)的人数占比为90%,这是一个条件概率,表示为P(P|E)=90%;在监察团队判定为健康商户群体中,由模型M1判定为阳性的人数占比为8%,表示为P(P|~E)=8%。乍看之下,你是不是觉得这个模型的准确度不够呢?感觉对商户有8%的误杀,还有10%的漏判。其实不然,这个模型的结果不是你想当然的这么使用的 

这里,我们需要使用一个称为“全概率公式”的计算模型,来计算出在M1判别某个商户为恶性商户时,这个结果的可信度有多高。这正是贝叶斯模型的核心。当M1判别某个商户为恶性商户时,这个商户的确是恶性商户的概率由P(E|P)表示:

P(E|P)

=P(P|E)*P(E) (P(E)*P(P|E)+P(~E)*P(P|~E)) 

上面就是全概率公式。要知道判别为恶性商户的前提下,该商户实际为恶性商户的概率,需要由先前的恶性商户比率P(E),以判别的恶性商户中的结果为阳性的商户比率P(P|E),以判别为健康商户中的结果为阳性的比率P(P|~E),以判别商户中健康商户的比率P(~E)来共同决定。

P(E)     0.2%
P(P|E)  90%
P(~E)   99.8%
P(P|~E)  8%
P(E|P)= P(P|E)*P(E) / (P(E)*P(P|E)+P(~E)*P(P|~E))  2.2%

由上面的数字,带入全概率公式后,我们获得的结果为2.2%。也就是说,根据M1的判别为阳性的结果,某个商户实际为恶性商户的概率为2.2%,是不进行判别的0.2%的11倍。

你可能认为2.2%的概率并不算高。但实际情况下你应该这么思考:被M1模型判别为恶性商户,说明这家商户做出恶性行为的概率是一般商户的11倍,那么,就非常有必要用进一步的手段进行检查了。

恶性商户判别模型真正的使用逻辑应该是如下图所示。我们先用M1进行一轮判别,结果是阳性的商户,说明出现恶性行为的概率是一般商户的11倍,那么有必要用精度更高的方式进行判别,或者人工介入进行检查。精度更高的检查和人工介入,成本都是非常高的。因此M1模型的使用能够使我们的成本得到大幅节约。 

Clipboard Image.png 

贝叶斯模型在很多方面都有应用,我们熟知的领域就有垃圾邮件识别、文本的模糊匹配、欺诈判别、商品推荐等等。通过贝叶斯模型的阐述,大家应该有这样的一种体会:分析模型并不取决于多么复杂的数学公式,多么高级的软件工具,多么高深的算法组合;它们的原理往往是通俗易懂的,实现起来也没有多高的门槛。比如贝叶斯模型,用Excel的单元格和加减乘除的符号就能实现。所以,不要觉得数据分析建模有多遥远,其实就在你手边。

附:

朴素贝叶斯分类的工作流程

                                        3.png

 

 

 

 

 

 

 

 

 

 

 

朴素贝叶斯分类适用解决的问题

        在考虑一个结果的概率时候,要考虑众多的属性,贝叶斯算法利用所有可能的数据来进行修正预测,如果大量的特征产生的影响较小,放在一起,组合的影响较大,适合于朴素贝叶斯分类。

应用范围:

贝叶斯定理广泛应用于决策分析。先验概率经常是由决策者主观估计的。在选择最佳决策时,会在取得样本信息后计算后验概率以供决策者使用。

 

 

在R语言中,是如何实现朴素贝叶斯算法的落地的?

 

R语言中的klaR就提供了朴素贝叶斯算法实现的函数NaiveBayes,我们来看一下该函数的用法及参数含义:

NaiveBayes(formula, data, ..., subset, na.action= na.pass)

NaiveBayes(x, grouping, prior, usekernel= FALSE, fL = 0, ...)

formula指定参与模型计算的变量,以公式形式给出,类似于y=x1+x2+x3;

data用于指定需要分析的数据对象;

na.action指定缺失值的处理方法,默认情况下不将缺失值纳入模型计算,也不会发生报错信息,当设为“na.omit”时则会删除含有缺失值的样本;

x指定需要处理的数据,可以是数据框形式,也可以是矩阵形式;

grouping为每个观测样本指定所属类别;

prior可为各个类别指定先验概率,默认情况下用各个类别的样本比例作为先验概率;

usekernel指定密度估计的方法(在无法判断数据的分布时,采用密度密度估计方法),默认情况下使用正态分布密度估计,设为TRUE时,则使用核密度估计方法;

fL指定是否进行拉普拉斯修正,默认情况下不对数据进行修正,当数据量较小时,可以设置该参数为1,即进行拉普拉斯修正。

R语言实战

本次实战内容的数据来自于UCI机器学习网站,后文会给出数据集合源代码的链接。

# 下载并加载所需的应用包

if(!suppressWarnings(require(‘caret’))){
  install.packages(‘caret’)
  require(‘caret’)
}
if(!suppressWarnings(require(‘klaR’))){
  install.packages(‘klaR’)
  require(‘klaR’)
}
if(!suppressWarnings(require(‘pROC’))){
  install.packages(‘pROC’)
  require(‘pROC’)
}
# 读取蘑菇数据集
mydata <- read.csv(file = file.choose())
# 简单的了解一下数据
str(mydata)
summary(mydata)

image.png

该数据集中包含了8124个样本和22个变量(如蘑菇的颜色、形状、光滑度等)。

 

# 抽样,并将总体分为训练集和测试集
set.seed(12)
index <- sample(1:nrow(mydata), size = 0.75*nrow(mydata))
train <- mydata[index,]
test <- mydata[-index,]
# 大致查看抽样与总体之间是否吻合
prop.table(table(mydata$type))
prop.table(table(train$type))
prop.table(table(test$type))

 

image.png

原始数据中毒蘑菇与非毒蘑菇之间的比较比较接近,通过抽选训练集和测试集,发现比重与总体比例大致一样,故可认为抽样的结果能够反映总体状况,可进一步进行建模和测试。

由于影响蘑菇是否有毒的变量有21个,可以先试着做一下特征选择,这里我们就采用随机森林方法(借助caret包实现特征选择的工作)进行重要变量的选择:

#构建rfe函数的控制参数(使用随机森林函数和10重交叉验证抽样方法,并抽取5组样本)
rfeControls_rf <- rfeControl(functions = rfFuncs,method = 'cv',repeats = 5)
#使用rfe函数进行特征选择				
fs_nb <- rfe(x = train[,-1],y = train[,1],sizes = seq(4,21,2),rfeControl = rfeControls_rf)
fs_nb
plot(fs_nb, type = c('g','o'))
fs_nb$optVariables

image.png

结果显示,21个变量中,只需要选择6个变量即可,下图也可以说明这一点:

image.png

所需要选择的变量是:

image.png

接下来,我们就针对这6个变量,使用朴素贝叶斯算法进行建模和预测:

# 使用klaR包中的NaiveBayes函数构建朴素贝叶斯算法
vars <- c('type',fs_nb$optVariables)
fit <- NaiveBayes(type ~ ., data = train[,vars])
# 预测
pred <- predict(fit, newdata = test[,vars][,-1])
# 构建混淆矩阵
freq <- table(pred$class, test[,1])
freq

image.png

# 模型的准确率
accuracy <- sum(diag(freq))/sum(freq)
accuracy

image.png

# 模型的AUC值
modelroc <- roc(as.integer(test[,1]), as.integer(factor(pred$class)))
# 绘制ROC曲线
plot(modelroc, print.auc = TRUE, auc.polygon = TRUE, grid = c(0.1,0.2), grid.col = c('green','red'),max.auc.polygon = TRUE, auc.polygon.col = 'steelblue')

image.png

通过朴素贝叶斯模型,在测试集中,模型的准确率约为97%,而且AUC的值也非常高,一般超过0.8就说明模型比较理想了。

 

参考来源于:https://ask.hellobi.com/blog/chuanshu108/6036

      https://ask.hellobi.com/blog/lsxxx2011/6381      

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/127234.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【c++|opencv】二、灰度变换和空间滤波---3.均值滤波

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 均值滤波 1. 均值滤波 #include <iostream> #include <opencv2/opencv.hpp> #include"Salt.h"using namespace cv; using names…

【Linux】vim 使用

目录 一&#xff0c;vim 与 vi 1&#xff0c;vim 的基本概念 二&#xff0c;vim 的基本操作 三&#xff0c;vim 正常模式命令集 1&#xff0c;插入模式 2&#xff0c;从插入模式或者底行模式切换为命令模式 3&#xff0c;移动光标 4&#xff0c;删除文字 5&#xff0…

grid布局中grid-row和grid-column

目录 一、grid-row 二、grid-column 三、实例 一、grid-row grid-row属性定义了网格元素行的开始和结束位置。结合了grid-row-start和grid-row-end grid-row: 1 / 3;//表示行线从第一行线到第三行线为止 二、grid-column grid-column属性定义了网格元素列的开始和结束位置…

《YOLOv8-Pose关键点检测》专栏介绍 CSDN独家改进创新实战 专栏目录

YOLOv8-Pose关键点检测专栏介绍&#xff1a;http://t.csdnimg.cn/gRW1b ✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集&#xff1b; &#x1f680;&#x1f680;&#x1f680;模型性能提升、pose模式部署能力&#xff1b; &#x1f349;&#x1f349;&#…

LeetCode----84. 柱状图中最大的矩形

题目 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积。 示例 1: 输入:heights = [2,1,5,6,2,3] 输出:10 解释:最大的矩形为图中红色区域,面积为 10 示例 2: 输入: heights =…

tolua中table.remove怎么删除表中符合条件的数据

tolua中table.remove怎么删除表中符合条件的数据 介绍问题&#xff08;错误方式删除数据&#xff09;正确删除方案从后向前删除递归方式删除插入新表方式 拓展一下总结 介绍 在lua中删除表中符合条件的数据其实很简单&#xff0c;但是有一个顺序问题&#xff0c;因为lua的表中…

【机器学习】四、计算学习理论

1 基础知识 计算学习理论&#xff08;computational learning theory&#xff09;&#xff1a;关于通过“计算”来进行“学习”的理论&#xff0c;即关于机器学习的理论基础&#xff0c;其目的是分析学习任务的困难本质&#xff0c;为学习算法体统理论保证&#xff0c;并根据结…

网络质量探测

目录 一.BFD监测网络状态 二. NQA检测网络状态 一.BFD监测网络状态 BFD(BidrectionaL Forwarding Detection 双向转发检测)用于快速检测系统设备之间的发送和接受两个方向的通信故障&#xff0c;并在出现故障时通知生成应用。BFD 广泛用于链路故障检测&#xff0c;并能实现与…

基于深度学习的口罩佩戴检测

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介二、功能三、基于深度学习的口罩佩戴检测四. 总结 一项目简介 基于深度学习的口罩佩戴检测是一种利用计算机视觉技术和深度学习算法进行口罩佩戴情况检测的…

计算机毕业设计选题推荐-校园失物招领微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

0基础学习PyFlink——时间滚动窗口(Tumbling Time Windows)

大纲 mapreduce完整代码参考资料 在《0基础学习PyFlink——个数滚动窗口(Tumbling Count Windows)》一文中&#xff0c;我们发现如果窗口内元素个数没有达到窗口大小时&#xff0c;计算个数的函数是不会被调用的。如下图中红色部分 那么有没有办法让上图中&#xff08;B,2&…

人工智能基础_机器学习007_高斯分布_概率计算_最小二乘法推导_得出损失函数---人工智能工作笔记0047

这个不分也是挺难的,但是之前有详细的,解释了,之前的文章中有, 那么这里会简单提一下,然后,继续向下学习 首先我们要知道高斯分布,也就是,正太分布, 这个可以预测x在多少的时候,概率最大 要知道在概率分布这个,高斯分布公式中,u代表平均值,然后西格玛代表标准差,知道了 这两个…

C++:map和set的基本使用

文章目录 搜索模型关联式容器setset的基本使用set的其他使用 multisetmapmap的基本使用map中的[] multimap 搜索模型 在实际搜索中有两个搜索模型&#xff1a;Key的搜索模型和Key/Value的搜索模型 Key的搜索模型&#xff1a; 简单来说就是在一个搜索树&#xff0c;搜索树中的…

汽车EDI:福特Ford EDI项目案例

项目背景 福特&#xff08;Ford&#xff09;是世界著名的汽车品牌&#xff0c;为美国福特汽车公司&#xff08;Ford Motor Company&#xff09;旗下的众多品牌之一。此前的文章福特FORD EDI需求分析中&#xff0c;我们已经了解了福特Ford EDI 的大致需求&#xff0c;本文将会介…

【Linux】jdk、tomcat、MySQL环境搭建的配置安装,Linux更改后端端口

一、作用 工具的组合为开发者和系统管理员提供了构建和运行Java应用程序以及存储和管理数据的完整环境。 JDK&#xff08;Java Development Kit&#xff09;&#xff1a;JDK是Java开发工具包&#xff0c;它提供了开发和运行Java应用程序所需的工具和库。通过安装JDK&#xff0c…

SolidWorks2019安装教程(正版)

网盘资源附文末 一.简介 SolidWorks软件是世界上第一个基于Windows开发的三维CAD系统&#xff0c;由于技术创新符合CAD技术的发展潮流和趋势&#xff0c;SolidWorks公司于两年间成为CAD/CAM产业中获利最高的公司。良好的财务状况和用户支持使得SolidWorks每年都有数十乃至数百…

Mac-Java开发环境安装(JDK和Maven)

JDK安装 1、访问oracle官网&#xff0c;下载jdk 点击下载链接&#xff1a;https://www.oracle.com/java/technologies/downloads/#java11-mac 选择Mac版本&#xff0c;下载dmg 打勾点击下载&#xff0c;跳转登陆&#xff0c;没有就注册&#xff0c;输入账号密码即可下载成功…

Ubuntu20.04安装CUDA、cuDNN、tensorflow2可行流程(症状:tensorflow2在RTX3090上运行卡住)

最近发现我之前在2080ti上运行好好的代码&#xff0c;结果在3090上运行会卡住很久&#xff0c;而且模型预测结果完全乱掉&#xff0c;于是被迫研究了一天怎么在Ubuntu20.04安装CUDA、cuDNN、tensorflow2。 1.安装CUDA&#xff08;包括CUDA驱动和CUDA toolkit&#xff0c;注意此…

ajax-axios发送 get请求 或者 发送post请求带有请求体参数

/* axios v0.21.1 | (c) 2020 by Matt Zabriskie */ !function(e,t){"object"typeof exports&&"object"typeof module?module.exportst():"function"typeof define&&define.amd?define([],t):"object"typeof export…

【WinForm详细教程四】WinForm中的ProgressBar 、ImageList和ListView控件

文章目录 1.ProgressBar2. ImageList3.ListView控件 1.ProgressBar 用于显示某个操作的进度。 属性&#xff1a; Value: 表示当前进度条的值&#xff0c;其范围由Min和Max决定。Step: 设置每次调用PerformStep()方法时增加的步长。MarqueeAnimationSpeed: 在Style设置为Marq…