【机器学习】四、计算学习理论

1 基础知识

计算学习理论(computational learning theory):关于通过“计算”来进行“学习”的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法体统理论保证,并根据结果指导算法设计。

对于二分类问题,给定样本集在这里插入图片描述
假设所有样本服从一个隐含未知的分布D DD,所有样本均独立同分布(independent and identically distributed)。

令h为样本到{ − 1 , + 1 } 上的一个映射,其泛化误差为
E ( h ; D ) = P x ∼ D ( h ( x ) ≠ y ) E(h;D)=P_{x\sim D}(h(x)\neq y)
E(h;D)=P
x∼D
​
(h(x)

​
=y)

h在D 的经验误差为
在这里插入图片描述

由于D是D的独立同分布采样,因此h hh的经验误差的期望等于其泛化误差。 在上下文明确时,我们将E ( h ; D ) 和E ^ ( h ; D ) 分别简记为E ( h )和E ^ ( h ) 。 令ϵ为E ( h ) 的上限,即E ( h ) ≤ ϵ E(h);我们通常用ϵ表示预先设定的学得模型所应满足的误差要求,亦称“误差参数”。

我们将研究经验误差和泛化误差之间的逼近程度;若h在数据集上的经验误差为0,则称h与D一致,否则称其不一致。对于任意两个映射h 1 , h 2 ∈ X → Y h_1,h_2,用不合(disagreement)来度量他们之间的差别:
d ( h 1 , h 2 ) = P x ∼ D ( h 1 ( x ) ≠ h 2 ( x ) )
我们将会用到几个常见的不等式:

Jensen不等式:对任意凸函数,有
f ( E ( X ) ) ≠ E ( f ( x ) ) f(E(X))\neq E(f(x))
f(E(X))

​
=E(f(x))

Hoeffding不等式:若x 1 , x 2 , … , x m
为m 个独立随机变量,且满足0 ≤ x i ≤ 1,对任意ϵ > 0,有
在这里插入图片描述

McDiarmid不等式:
在这里插入图片描述

2 PAC学习

概率近似正确理论(Probably Approximately Correct,PAC):

首先介绍两个概念:

C:概念类。表示从样本空间到标记空间的映射,对任意样例,都能使得c ( x ) = y 。
H :假设类。学习算法会把认为可能的目标概念集中起来构成H。
若c ∈ H ,则说明假设能将所有示例按真实标记一致的方式完全分开,称为该问题对学习算法而言是”可分的“;否则,称为”不可分的“
对于训练集,我们希望学习算法学习到的模型所对应的假设h hh尽可能接近目标概念c。我们是希望以比较大的把握学得比较好的模型,也就是说,以较大的概率学得误差满足预设上限的模型,这就是"概率近似正确"的含义。形式化地说,令δ 表示置信度,可定义:

PAC辨识:对0 ≤ ϵ , δ < 1 ,所有的c ∈ C 和分布D ,若存在学习算法,其输出假设h ∈ H 满足:
P ( E ( h ) ≤ ϵ ) ≥ 1 − δ P(E(h)\le \epsilon)\ge 1- \delta
P(E(h)≤ϵ)≥1−δ

在这里插入图片描述

PAC学习中一个关键因素是假设空间H的复杂度。H包含了学习算法所有可能输出的假设,若在PAC学习中假设空间与概念类完全相同,即H=C,这称为"恰PAC可学习" (properly PAC learnable)。直观地看,这意味着学习算法的能力与学习任务”恰好匹配“。
然而,这种让所有候选假设都来自概念类的要求看似合理,但却并不实际,因为在现实应用中我们对概念类C CC通常一无所知,更别说获得一个假设空间与概念类恰好相同的学习算法。显然,更重要的是研究假设空间与概念类不同的情形,即H ≠ C H\neq CH

​
=C。 一般而言,H HH越大,其包含任意目标概念的可能性越大,但从中找到某个具体目标概念的难度也越大。∣ H ∣ |H|∣H∣有限时,我们称究为"有限假设空间",否则称为"无限假设空间"。

3 有限假设空间

3.1 可分情形
在这里插入图片描述

3.2 不可分情形
在这里插入图片描述

4 VC维

在这里插入图片描述

5 Rademacher复杂度

在这里插入图片描述

6 稳定性

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/127227.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络质量探测

目录 一.BFD监测网络状态 二. NQA检测网络状态 一.BFD监测网络状态 BFD(BidrectionaL Forwarding Detection 双向转发检测)用于快速检测系统设备之间的发送和接受两个方向的通信故障&#xff0c;并在出现故障时通知生成应用。BFD 广泛用于链路故障检测&#xff0c;并能实现与…

基于深度学习的口罩佩戴检测

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介二、功能三、基于深度学习的口罩佩戴检测四. 总结 一项目简介 基于深度学习的口罩佩戴检测是一种利用计算机视觉技术和深度学习算法进行口罩佩戴情况检测的…

计算机毕业设计选题推荐-校园失物招领微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

0基础学习PyFlink——时间滚动窗口(Tumbling Time Windows)

大纲 mapreduce完整代码参考资料 在《0基础学习PyFlink——个数滚动窗口(Tumbling Count Windows)》一文中&#xff0c;我们发现如果窗口内元素个数没有达到窗口大小时&#xff0c;计算个数的函数是不会被调用的。如下图中红色部分 那么有没有办法让上图中&#xff08;B,2&…

人工智能基础_机器学习007_高斯分布_概率计算_最小二乘法推导_得出损失函数---人工智能工作笔记0047

这个不分也是挺难的,但是之前有详细的,解释了,之前的文章中有, 那么这里会简单提一下,然后,继续向下学习 首先我们要知道高斯分布,也就是,正太分布, 这个可以预测x在多少的时候,概率最大 要知道在概率分布这个,高斯分布公式中,u代表平均值,然后西格玛代表标准差,知道了 这两个…

C++:map和set的基本使用

文章目录 搜索模型关联式容器setset的基本使用set的其他使用 multisetmapmap的基本使用map中的[] multimap 搜索模型 在实际搜索中有两个搜索模型&#xff1a;Key的搜索模型和Key/Value的搜索模型 Key的搜索模型&#xff1a; 简单来说就是在一个搜索树&#xff0c;搜索树中的…

汽车EDI:福特Ford EDI项目案例

项目背景 福特&#xff08;Ford&#xff09;是世界著名的汽车品牌&#xff0c;为美国福特汽车公司&#xff08;Ford Motor Company&#xff09;旗下的众多品牌之一。此前的文章福特FORD EDI需求分析中&#xff0c;我们已经了解了福特Ford EDI 的大致需求&#xff0c;本文将会介…

【Linux】jdk、tomcat、MySQL环境搭建的配置安装,Linux更改后端端口

一、作用 工具的组合为开发者和系统管理员提供了构建和运行Java应用程序以及存储和管理数据的完整环境。 JDK&#xff08;Java Development Kit&#xff09;&#xff1a;JDK是Java开发工具包&#xff0c;它提供了开发和运行Java应用程序所需的工具和库。通过安装JDK&#xff0c…

SolidWorks2019安装教程(正版)

网盘资源附文末 一.简介 SolidWorks软件是世界上第一个基于Windows开发的三维CAD系统&#xff0c;由于技术创新符合CAD技术的发展潮流和趋势&#xff0c;SolidWorks公司于两年间成为CAD/CAM产业中获利最高的公司。良好的财务状况和用户支持使得SolidWorks每年都有数十乃至数百…

Mac-Java开发环境安装(JDK和Maven)

JDK安装 1、访问oracle官网&#xff0c;下载jdk 点击下载链接&#xff1a;https://www.oracle.com/java/technologies/downloads/#java11-mac 选择Mac版本&#xff0c;下载dmg 打勾点击下载&#xff0c;跳转登陆&#xff0c;没有就注册&#xff0c;输入账号密码即可下载成功…

Ubuntu20.04安装CUDA、cuDNN、tensorflow2可行流程(症状:tensorflow2在RTX3090上运行卡住)

最近发现我之前在2080ti上运行好好的代码&#xff0c;结果在3090上运行会卡住很久&#xff0c;而且模型预测结果完全乱掉&#xff0c;于是被迫研究了一天怎么在Ubuntu20.04安装CUDA、cuDNN、tensorflow2。 1.安装CUDA&#xff08;包括CUDA驱动和CUDA toolkit&#xff0c;注意此…

ajax-axios发送 get请求 或者 发送post请求带有请求体参数

/* axios v0.21.1 | (c) 2020 by Matt Zabriskie */ !function(e,t){"object"typeof exports&&"object"typeof module?module.exportst():"function"typeof define&&define.amd?define([],t):"object"typeof export…

【WinForm详细教程四】WinForm中的ProgressBar 、ImageList和ListView控件

文章目录 1.ProgressBar2. ImageList3.ListView控件 1.ProgressBar 用于显示某个操作的进度。 属性&#xff1a; Value: 表示当前进度条的值&#xff0c;其范围由Min和Max决定。Step: 设置每次调用PerformStep()方法时增加的步长。MarqueeAnimationSpeed: 在Style设置为Marq…

RabbitMQ 运维 扩展

1、集群管理与配置 1.1、集群搭建 关于Rabbitmq 集群的搭建&#xff0c;详见以下文章。简单说来就是将多个单机rabbitmq服务&#xff0c;通过给到一致的密钥&#xff08;.erlang.cookie&#xff09;并且开放rabbitmq服务的 25672 端口&#xff0c;允许多节点间进行互相通讯&am…

iptables 与 firewalld

iptables 一、主机型&#xff08;包过滤防火墙&#xff09; 1、简介&#xff1a; 包过滤型防火墙是一种网络安全设备或软件&#xff0c;它工作在 2、3、4 层&#xff0c;通过检查网络数据包的源地址、目标地址、协议、端口等信息&#xff0c;根据预定义的规则来决定是否允许…

ip划分与私公网ip、ip的传递

报文问路&#xff1a;1、不知道跳转默认路由器&#xff0c;2、知道路径&#xff0c;向对应路径发出报文&#xff0c;3、路口路由器&#xff0c;下一步就是目标主机在哪。 想要通信必须同在一个局域网&#xff0c;其实将公网就可以看作一个大型的局域网。 在同一个局域网内发送…

正点原子嵌入式linux驱动开发——Linux USB驱动

USB是很常用的接口&#xff0c;目前大多数的设备都是USB接口的&#xff0c;比如鼠标、键盘、USB摄像 头等&#xff0c;在实际开发中也常常遇到USB接口的设备&#xff0c;本章就来学习一下如何使能Linux内核自带的USB驱动。这里不会具体学习USB的驱动开发。 USB接口简介 什么是…

413 Request Entity Too Large(nginx/1.24.0)

报错内容 <html><head><title>413 Request Entity Too Large</title></head><body><center><h1>413 Request Entity Too Large</h1></center><hr><center>nginx/1.24.0</center></body>&…

Explaining and harnessing adversarial examples

Explaining and harnessing adversarial examples----《解释和利用对抗样本》 背景&#xff1a; 早期的研究工作认为神经网络容易受到对抗样本误导是由于其非线性特征和过拟合。 创新点&#xff1a; 该论文作者认为神经网络易受对抗性扰动影响的主要原因是它的线性本质&#xf…

精通Nginx(03)-配置简述

本文主要讲述Nginx配置文件结构及调试技巧 使用nginx版本为1.24.0。 目录 Nginx目录 nginx.conf内容结构 配置片段化 配置调试技巧 Nginx目录 Nginx编译安装目录如下&#xff1a; 安装指定目录为"/usr/local"。配置目录为/usr/local/nginx/conf。 目录说明&am…