Java-数组的定义和使用

一、数组的基本概念

        1.1 为什么要使用数组

                假设现在要存5个学生的javaSE考试成绩,并对其进行输出,则可有

        public static void main(String[] args){
        int score1 = 70;
        int score2 = 80;
        int score3 = 85;
        int score4 = 60;
        int score5 = 90;
        System.out.println(score1);
        System.out.println(score2);
        System.out.println(score3);
        System.out.println(score4);
        System.out.println(score5);
}

 

                数据是同种类型,如果要存入多个数据,上述方法就非常麻烦,可以用一种更简单的方法来存储数据,那就是数组。

        1.2 什么是数组

                数组:可以看成是相同类型元素的一个集合。在内存中是一段连续的空间。
                注意:数组中存放的元素其类型相同,数组的空间是连在一起的每个空间有自己的编号,起始位置编号即数组的下标为0

        1.3 数组的创建及初始化

                1.数组的创建

        T[] 数组名 = new T[N];

                T:数组中存放元素的类型,T[]:数组的类型,N:数组的长度。

        int[] array1 = new int[10];
        double[] array2 = new double[5];

               2.数组的初始化

                数组的初始化主要分为动态初始化以静态初始化

                动态初始化:在创建数组时,直接指定数组中元素的个数

                int[] array = new int[10];

                静态初始化:在创建数组时不直接指定数据元素个数,而直接将具体的数据内容进行指定。
                格式:T[] 数组名称 = {data1, data2, data3, ..., datan};

                int[] array1 = new int[]{0,1,2,3,4,5,6,7,8,9};
                double[] array2 = new double[]{1.0, 2.0, 3.0, 4.0, 5.0};

                  注意:静态初始化虽然没有指定数组的长度,但编译器在编译时会根据{}中元素个数来确定数组的长度静态初始化可以简写,省去后面的new T[]

                int[] array1 = {0,1,2,3,4,5,6,7,8,9};
                double[] array2 = {1.0, 2.0, 3.0, 4.0, 5.0};

                静态和动态初始化也可以分为两步,但是省略格式不可以。

                int[] array1;
                array1 = new int[10];


                int[] array2;
                array2 = new int[]{10, 20, 30};


                // 编译失败
                // int[] array3;
                // array3 = {1, 2, 3};

               如果没有对数组进行初始化,数组中元素有其默认值,如果数组中存储元素类型为基类类型,默认值为基类类型对应的默认值,如果数组中存储元素类型为引用类型,默认值为null。

类型默认值
byte      0
short0
int0
long0
float0.0f
double0.0
char/u0000
booleanfalse

         1.4 数组的使用

                数组在内存中是一段连续的空间,空间的编号都是从0开始的,依次递增,该编号称为数组的下标,数组可以通过下标访问其任意位置的元素。

                例如

        int[]array = new int[]{10, 20, 30, 40, 50};
        System.out.println(array[0]);
        System.out.println(array[1]);
        System.out.println(array[2]);
        System.out.println(array[3]);
        System.out.println(array[4]);

        // 也可以通过[]对数组中的元素进行修改
        array[0] = 100;
        System.out.println(array[0]);

 

                注意:数组支持随机访问,即通过下标访问快速访问数组中任意位置的元素,下标从0开始,介于[0, N)之间不包含N,N为元素个数

                遍历数组:将数组中的所有元素都访问一遍。

        int[]array = new int[]{10, 20, 30, 40, 50};
        for(int i = 0; i < 5; i++){
        System.out.println(array[i]);

 

                也可以使用 for-each 遍历数组。

            int[] array = {1, 2, 3};
             for (int x : array) {
             System.out.println(x);
             }

 

                在数组中可以通过 数组对象.length 来获取数组的长度。

        int[]array = new int[]{10, 20, 30, 40, 50};
        for(int i = 0; i < array.length; i++){
        System.out.println(array[i]);

        }

        

 

二、数组是引用类型

        2.1初始JVM的内存分布

        内存是一段连续的存储空间,主要用来存储程序运行时的数据,例如:程序运行时代码需要加载到内存;程序运行产生的中间数据要存放在内存;程序中的常量也要保存;有些数据可能需要长时间存储,而有些数据当方法运行结束后就要被销毁。如果对内存中存储的数据不加区分的随意存储,那对内存管理起来将会非常麻烦,故JVM也对所使用的内存按功能不同进行划分。

               方法区和堆是由所有线程共享的数据区,而虚拟机栈、本地方法栈和程序计数器是线程隔离的数据区。

                程序计数器 : 只是一个很小的空间, 保存下一条执行的指令的地址
                虚拟机栈: 与方法调用相关的一些信息,每个方法在执行时,都会先创建一个栈帧,栈帧中包含有:局部变量表、操作数栈、动态链接、返回地址以及其他的一些信息,保存的都是与方法执行时相关的一些信息。比如:局部变量。当方法运行结束后,栈帧就被销毁了,即栈帧中保存的数据也被销毁。

                本地方法栈: 本地方法栈与虚拟机栈的作用类似. 只不过保存的内容是Native方法的局部变量. 在有些版本的 JVM 实现中(例如HotSpot), 本地方法栈和虚拟机栈是一起的。

                : JVM所管理的最大内存区域. 使用 new 创建的对象都是在堆上保存 (例如前面的 new int[]{1, 2,3} ),堆是随着程序开始运行时而创建,随着程序的退出而销毁,堆中的数据只要还有在使用,就不会被销毁
                方法区: 用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据, 方法编译出的的字节码就是保存在这个区域。

        2.2 基本类型变量和引用类型变量 

                基本数据类型创建的变量,称为基本变量,该变量空间中直接存放的是其所对应的值;而引用数据类型创建的变量,一般称为对象的引用,其空间中存储的是对象所在空间的地址

        public static void func() {
                int a = 10;
                int b = 20;
                int[] arr = new int[]{1,2,3};
        }

                a、b、arr,都是函数内部的变量,故其空间都在main方法对应的栈帧中分配,a、b是内置类型的变量,故其空间中保存的就是给该变量初始化的值,array是数组类型的引用变量,其内部保存的内容是数组在堆空间中的首地址。引用变量并不直接存储对象本身,可以简单理解成存储的是对象在堆中空间的起始地址。通过该地址,引用变量便可以去操作对象。

 

        2.3引用变量

        public static void func() {
                int[] array1 = new int[3];
                array1[0] = 10;
                array1[1] = 20;
                array1[2] = 30;


                int[] array2 = new int[]{1,2,3,4,5};
                array2[0] = 100;
                array2[1] = 200;


                array1 = array2;
                array1[2] = 300;
                array1[3] = 400;
                array2[4] = 500;
                for (int i = 0; i < array2.length; i++) {
                System.out.println(array2[i]);
                }
        }

 

        2.4 null

                null 在 Java 中表示 "空引用" , 也就是一个不指向对象的引用。null 的作用类似于 C 语言中的 NULL (空指针), 都是表示一个无效的内存位置. 因此不能对这个内存进行任何读写操作。

        int[] arr = null;
        System.out.println(arr[0]);

三、数组的应用场景

      3.1保存数据

        public static void main(String[] args) {
                int[] array = {1, 2, 3};
                for(int i = 0; i < array.length; ++i){
                System.out.println(array[i] + " ");
                }
        }

 

      3.2作为函数的参数

        1.参数传基本数据类型

        public static void main(String[] args) {
                int num = 0;
                func(num);
                System.out.println("num = " + num);
        }
        public static void func(int x) {
                x = 10;
                System.out.println("x = " + x);

        }

 

        2.参数传数组类型(引用数据类型)

        public static void main(String[] args) {
                int[] arr = {1, 2, 3};
                func(arr);
                System.out.println("arr[0] = " + arr[0]);
        }
         public static void func(int[] a) {
                a[0] = 10;
                System.out.println("a[0] = " + a[0]);

        }

 

                总结: 所谓的 "引用" 本质上只是存了一个地址. Java 将数组设定成引用类型, 这样的话后续进行数组参数传参, 其实只是将数组的地址传入到函数形参中。

     3.3 作为函数返回值

        示例 求斐波那契数列前N项

       public static int[] fib(int n){
                if(n <= 0){
                return null;
                }

                int[] array = new int[n];
                array[0] = array[1] = 1;
                for(int i = 2; i < n; ++i){
                array[i] = array[i-1] + array[i-2];
                }

               return array;
        }
        public static void main(String[] args) {
                int[] array = fib(10);
                for (int i = 0; i < array.length; i++) {
                System.out.println(array[i]);
                }
        }

四、数组练习

        4.1 数组转字符串

        示例

        import java.util.Arrays
        int[] arr = {1,2,3,4,5,6};
        String newArr = Arrays.toString(arr);
        System.out.println(newArr);

 

        Java 中提供了 java.util.Arrays 包, 其中包含了一些操作数组的常用方法。

        4.2  数组拷贝

        4.3 求数组中元素的平均值

        给定一个整型数组, 求平均值。
        示例

        public static void main(String[] args) {
                int[] arr = {1,2,3,4,5,6};
                System.out.println(avg(arr));
        }
        public static double avg(int[] arr) {
                int sum = 0;
                for (int x : arr) {
                sum += x;
                }

                return (double)sum / (double)arr.length;

        }

 

        4.4  查找数组中指定元素(顺序查找)

        给定一个数组, 再给定一个元素, 找出该元素在数组中的位置。
        示例

        public static void main(String[] args) {
                int[] arr = {1,2,3,10,5,6};
                System.out.println(find(arr, 10));
        }
        public static int find(int[] arr, int data) {
                for (int i = 0; i < arr.length; i++) {
                        if (arr[i] == data) {
                        return i;
                        }
                }

                return -1;
        }

        4.5查找数组中指定元素(二分查找)

        针对有序数组, 可以使用更高效的二分查找,有序数组指元素依次增大或依次减小的数组。以升序数组为例, 二分查找的思路是先取中间位置的元素, 然后使用待查找元素与数组中间元素进行比较,如果相等,即找到了返回该元素在数组中的下标,如果小于,以类似方式到数组左半侧查找,如果大于,以类似方式到数组右半侧查找

        示例

        public static void main(String[] args) {
                int[] arr = {1,2,3,4,5,6};
                System.out.println(binarySearch(arr, 6));
        }
        public static int binarySearch(int[] arr, int toFind) {
                int left = 0;
                int right = arr.length - 1;
                while (left <= right) {

                        int mid = (left + right) / 2;
                        if (toFind < arr[mid]) {
                                // 去左侧区间找
                                right = mid - 1;
                        } else if (toFind > arr[mid]) {
                              // 去右侧区间找
                               left = mid + 1;
                        } else {
                                // 相等, 说明找到了
                                return mid;
                          }
                } // 循环结束, 说明没找到
                return -1;

        }

        4.6数组排序(冒泡排序)

        给定一个数组, 让数组升序 (降序) 排序,分析:假设升序,将数组中相邻元素从前往后依次进行比较,如果前一个元素比后一个元素大,则交换,一趟下来后最大元素就在数组的末尾,依次从上上述过程,直到数组中所有的元素都排列好
        示例

import java.util.Arrays;
public static void main(String[] args) {int[] arr = {9, 5, 2, 7};bubbleSort(arr);System.out.println(Arrays.toString(arr));
}

public static void bubbleSort(int[] arr) {
        for (int i = 0; i < arr.length; i++) {
                for (int j = 1; j < arr.length-i; j++) {
                        if (arr[j-1] > arr[j]) {
                        int tmp = arr[j - 1];
                        arr[j - 1] = arr[j];
                        arr[j] = tmp;
                        }
                }
        } 
}

 

        冒泡排序性能较低. Java 中内置了更高效的排序算法

public static void main(String[] args) {
        int[] arr = {9, 5, 2, 7};
        Arrays.sort(arr);
        System.out.println(Arrays.toString(arr));
}

 

        4.7数组逆序

        给定一个数组, 将里面的元素逆序排列,分析:设定两个下标, 分别指向第一个元素和最后一个元素. 交换两个位置的元素,然后让前一个下标自增, 后一个下标自减, 循环继续即可。

        示例

public static void main(String[] args) {
        int[] arr = {1, 2, 3, 4};
        reverse(arr);
        System.out.println(Arrays.toString(arr));
}
public static void reverse(int[] arr) {
        int left = 0;
        int right = arr.length - 1;
        while (left < right) {
        int tmp = arr[left];
        arr[left] = arr[right];
        arr[right] = tmp;
        left++;

        right--;
        }

}

 

五、二维数组

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12686.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

List的各种排序

目录 Collections.sort对list进行排序 对象中某个属性进行排序 通过比较器进行比较 JAVA8特性Stream流进行排序 Stream升降序组合使用 Collections.sort对list进行排序 public static void main(String[] args) {List<Integer> list new ArrayList<>();list…

【Nodejs】操作mongodb数据库

1.简介 Mongoose是一个让我们可以通过Node来操作MongoDB的模块。Mongoose是一个对象文档模型(ODM)库,它对Node原生的MongoDB模块进行了进一步的优化封装&#xff0c;并提供了更多的功能。在大多数情况下&#xff0c;它被用来把结构化的模式应用到一个MongoDB集合&#xff0c;并…

数据结构:链表的一些经典的OJ题目

文章目录 写在前面链表OJ调试技巧移除链表元素反转链表链表的中间节点链表中倒数第K个节点链表分割问题 写在前面 本篇为本人学习链表的过程中遇到的典型OJ题&#xff0c;于是整理出来分享思路和便于后续重新学习&#xff0c;每个标题均可跳转至对应习题&#xff0c;大多为Lee…

宝塔面板Django项目部署(无数据库版)

近日在学习使用宝塔面板部署Django开发的web项目&#xff0c;走了不少弯路花了3天的时间才完成下面的文字&#xff0c;希望这篇文字能给正在摸索中的人带去点帮助。 一、安装宝塔面板 打开宝塔面板的官方网站(https://www.bt.cn/new/index.html).点击" " 会看到: 当…

内核链表在用户程序中的移植和使用

基础知识 struct list_head {struct list_head *next, *prev; }; 初始化&#xff1a; #define LIST_HEAD_INIT(name) { (name)->next (name); (name)->prev (name);} 相比于下面这样初始化&#xff0c;前面初始化的好处是&#xff0c;处理链表的时候&#xff0c;不…

Jenkins构建完成后发送消息至钉钉

钉钉群的最终效果&#xff1a; 1、jenkins安装DingTalk插件&#xff0c;安装完成后重启 2、配置钉钉插件 参考官网文档&#xff1a;快速开始 | 钉钉机器人插件 系统管理 拉到最下面&#xff0c;可以看到钉钉配置 按照如下配置钉钉机器人 配置完成可以点击测试按钮&#xff0…

Tensorflow报错protobuf requires Python ‘>=3.7‘ but the running Python is 3.6.8

报错信息 仔细观察下方命令后&#xff0c;可得运行:python -m pip install --upgrade pip即可 完成后再次执行性安装命令 成功&#xff01;&#xff01;&#xff01;

监控和可观察性在 DevOps 中的作用!

在不断发展的DevOps世界中&#xff0c;深入了解系统行为、诊断问题和提高整体性能的能力是首要任务之一。监控和可观察性是促进这一过程的两个关键概念&#xff0c;为系统的健康状况和性能提供有价值的可见性。虽然这些术语经常互换使用&#xff0c;但它们代表了理解和管理复杂…

c++网络编程

网络编程模型 c/s 模型&#xff1a;客户端服务器模型b/s 模型&#xff1a;浏览器服务器模型1.tcp网络流程 服务器流程&#xff1a; 1.创建套接字2.完善服务器网络信息结构体3.绑定服务器网络信息结构体4.让服务器处于监听状态5.accept阻塞等待客户端连接信号6.收发数据7.关闭套…

Appium+python自动化(二十八)- 高级滑动(超详解)

高级溜冰的滑动 滑动操作一般是两点之间的滑动&#xff0c;这种滑动在这里称其为低级的溜冰滑动&#xff1b;就是上一节给小伙伴们分享的。然而实际使用过程中用户可能要进行一些多点连续滑动操作。如九宫格滑动操作&#xff0c;连续拖动图片移动等场景。那么这种高级绚丽的溜…

【node.js】04-模块化

目录 一、什么是模块化 二、node.js中的模块化 1. node.js中模块的分类 2. 加载模块 3. node.js 中的模块作用域 4. 向外共享模块作用域中的成员 4.1 module对象 4.2 module.exports 对象 4.3 exports对象 5. node.js 中的模块化规范 一、什么是模块化 模块化是指解…

使用python库uvicorn替代Nginx发布Vue3项目

目录 一、Vue3项目打包 二、将打包文件放到python项目 三、配置uvicorn服务 四、启动服务 【SpringBoot版传送门&#xff1a;使用SpringBoot替代Nginx发布Vue3项目_苍穹之跃的博客-CSDN博客】 一、Vue3项目打包 &#xff08;博主vue版本&#xff1a;3.2.44&#xff09; 由…

Android平台GB28181设备接入侧如何同时对外输出RTSP流?

技术背景 GB28181的应用场景非常广泛&#xff0c;如公共安全、交通管理、企业安全、教育、医疗等众多领域&#xff0c;细分场景可用于如执法记录仪、智能安全帽、智能监控、智慧零售、智慧教育、远程办公、明厨亮灶、智慧交通、智慧工地、雪亮工程、平安乡村、生产运输、车载终…

2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) | EI Compendex, Scopus双检索

会议简介 Brief Introduction 2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) 会议时间&#xff1a;2023年9月22日-24日 召开地点&#xff1a;中国杭州 大会官网&#xff1a;ECNLPIR 2023-2023 Eurasian Conference on Natural Language Processing and Information Retr…

【Linux】进程通信 — 管道

文章目录 &#x1f4d6; 前言1. 通信背景1.1 进程通信的目的&#xff1a;1.2 管道的引入&#xff1a; 2. 匿名管道2.1 匿名管道的原理&#xff1a;2.2 匿名管道的创建&#xff1a;2.3 父子进程通信&#xff1a;2.3.1 read()阻塞等待 2.4 父进程给子进程派发任务&#xff1a;2.5…

使用adb通过电脑给安卓设备安装apk文件

最近碰到要在开发板上安装软件的问题&#xff0c;由于是开发板上的安卓系统没有解析apk文件的工具&#xff0c;所以无法通过直接打开apk文件来安装软件。因此查询各种资料后发现可以使用adb工具&#xff0c;这样一来可以在电脑上给安卓设备安装软件。 ADB 就是连接 Android 手…

NFT市场泡沫破裂了吗?投资NFT是否仍然安全?

近期&#xff0c;NFT市场的价格出现了明显的下跌趋势&#xff0c;许多人开始担心NFT市场是否已经进入了泡沫破裂的阶段。但是&#xff0c;我们需要认真分析这个问题&#xff0c;并且探讨投资NFT是否仍然安全。 NFT&#xff08;Non-Fungible Token&#xff09;是一种非同质化代币…

算法竞赛入门【码蹄集新手村600题】(MT1060-1080)

算法竞赛入门【码蹄集新手村600题】(MT1060-1080&#xff09; 目录MT1061 圆锥体的体积MT1062 圆锥体表面积MT1063 立方体的体积MT1064 立方体的表面积MT1065 长方体的表面积MT1066 射线MT1067 线段MT1068 直线切平面MT1069 圆切平面MT1070 随机数的游戏MT1071 计算表达式的值M…

网络防御之IDS

1. 什么是IDS&#xff1f; IDS是入侵检测系统&#xff0c;一种对于网络传输进行及时监视&#xff0c;在发现可疑的传输时发出警报或者采取主动反应措施的网络安全设备。IDS是一种积极地主动的防御技术。 2. IDS和防火墙有什么不同&#xff1f; 防火墙是一种隔离并过滤非授权用…

Leetcode-每日一题【剑指 Offer II 075. 数组相对排序】

题目 给定两个数组&#xff0c;arr1 和 arr2&#xff0c; arr2 中的元素各不相同 arr2 中的每个元素都出现在 arr1 中 对 arr1 中的元素进行排序&#xff0c;使 arr1 中项的相对顺序和 arr2 中的相对顺序相同。未在 arr2 中出现过的元素需要按照升序放在 arr1 的末尾。 示例&…