import numpy as np
import matplotlib. pyplot as plt
import seaborn as sns
from sklearn. metrics import roc_curve, auc, confusion_matrix, \precision_recall_curve, average_precision_score
from sklearn. metrics import roc_auc_score
y_true = [ 0 , 1 , 0 , 1 , 1 , 0 ]
y_pred = [ 0.2 , 0.6 , 0.3 , 0.8 , 0.2 , 0.1 ]
fpr, tpr, thresholds = roc_curve( y_true, y_pred)
roc_auc = auc( fpr, tpr)
plt. title( 'Receiver Operating Characteristic' )
plt. plot( fpr, tpr, 'b' , label= 'AUC = %0.2f' % roc_auc)
plt. legend( loc= 'lower right' )
plt. plot( [ 0 , 1 ] , [ 0 , 1 ] , 'r--' )
plt. xlim( [ - 0.1 , 1.1 ] )
plt. ylim( [ - 0.1 , 1.1 ] )
plt. ylabel( 'True Positive Rate' )
plt. xlabel( 'False Positive Rate' )
plt. show( )
tn, fp, fn, tp = confusion_matrix( y_true, [ 1 if i > 0.5 else 0 for i in y_pred] ) . ravel( )
labels = [ 'True Negative' , 'False Positive' , 'False Negative' , 'True Positive' ]
categories = [ 'Negative' , 'Positive' ]
sns. heatmap( [ [ tn, fp] , [ fn, tp] ] , annot= True , fmt= 'd' , xticklabels= categories, yticklabels= categories, cmap= "YlGnBu" )
plt. xlabel( 'Predicted Label' )
plt. ylabel( 'True Label' )
plt. title( 'Confusion Matrix' )
plt. show( )
precision, recall, thresholds = precision_recall_curve( y_true, y_pred)
average_precision = average_precision_score( y_true, y_pred)
plt. step( recall, precision, color= 'b' , alpha= 0.2 , where= 'post' )
plt. fill_between( recall, precision, step= 'post' , alpha= 0.2 , color= 'b' )
plt. xlabel( 'Recall' )
plt. ylabel( 'Precision' )
plt. ylim( [ 0.0 , 1.05 ] )
plt. xlim( [ 0.0 , 1.0 ] )
plt. title( 'Precision-Recall curve: AP={0:0.2f}' . format ( average_precision) )
plt. show( ) plt. show( )