【Overload游戏引擎细节分析】PBR材质Shader---完结篇

PBR基于物理的渲染可以实现更加真实的效果,其Shader值得分析一下。但PBR需要较多的基础知识,不适合不会OpenGL的朋友。

一、PBR理论

PBR指基于物理的渲染,其理论较多,需要的基础知识也较多,我在这就不再写一遍了,具体可以参看:
LearnOpenGL PBR理论-英文 或者 LearnOpenGL PBR理论-中文

Overload也提供了这种材料,借助贴图可以实现非常真实的材质效果。下面这个例子的贴图来自LearnOpenGL,大家可以自己去下载。
在这里插入图片描述

二、PBR Shader分析

顶点着色器
#shader vertex
#version 430 corelayout (location = 0) in vec3 geo_Pos;
layout (location = 1) in vec2 geo_TexCoords;
layout (location = 2) in vec3 geo_Normal;
layout (location = 3) in vec3 geo_Tangent;
layout (location = 4) in vec3 geo_Bitangent;/* Global information sent by the engine */
layout (std140) uniform EngineUBO
{mat4    ubo_Model;mat4    ubo_View;mat4    ubo_Projection;vec3    ubo_ViewPos;float   ubo_Time;
};/* Information passed to the fragment shader */
out VS_OUT
{vec3        FragPos;vec3        Normal;vec2        TexCoords;mat3        TBN;flat vec3   TangentViewPos;vec3        TangentFragPos;
} vs_out;void main()
{vs_out.TBN = mat3(normalize(vec3(ubo_Model * vec4(geo_Tangent,   0.0))),normalize(vec3(ubo_Model * vec4(geo_Bitangent, 0.0))),normalize(vec3(ubo_Model * vec4(geo_Normal,    0.0))));mat3 TBNi = transpose(vs_out.TBN);vs_out.FragPos          = vec3(ubo_Model * vec4(geo_Pos, 1.0));vs_out.Normal           = normalize(mat3(transpose(inverse(ubo_Model))) * geo_Normal);vs_out.TexCoords        = geo_TexCoords;vs_out.TangentViewPos   = TBNi * ubo_ViewPos;vs_out.TangentFragPos   = TBNi * vs_out.FragPos;gl_Position = ubo_Projection * ubo_View * vec4(vs_out.FragPos, 1.0);
}

顶点着色器基本与standard材质一致,这里就不再分析了,具体可看standard材质Shader

片元着色器:
#shader fragment
#version 430 core/** 模型视图矩阵、摄像机位置,使用UBO传入 */
/* Global information sent by the engine */
layout (std140) uniform EngineUBO
{mat4    ubo_Model;mat4    ubo_View;mat4    ubo_Projection;vec3    ubo_ViewPos;float   ubo_Time;
};/* 顶点着色器的输出 */
/* Information passed from the fragment shader */
in VS_OUT
{vec3        FragPos;vec3        Normal;vec2        TexCoords;mat3        TBN;flat vec3   TangentViewPos;vec3        TangentFragPos;
} fs_in;/* 光源数据用SSBO传入 */
/* Light information sent by the engine */
layout(std430, binding = 0) buffer LightSSBO
{mat4 ssbo_Lights[];
};out vec4 FRAGMENT_COLOR;uniform sampler2D   u_AlbedoMap; // 反照率贴图
uniform sampler2D   u_MetallicMap; // 金属度贴图
uniform sampler2D   u_RoughnessMap; // 粗糙度贴图
uniform sampler2D   u_AmbientOcclusionMap; // 环境光遮蔽贴图
uniform sampler2D   u_NormalMap; // 法线贴图
uniform vec4        u_Albedo                = vec4(1.0); // 反照率系数,控制反照率贴图的权重
uniform vec2        u_TextureTiling         = vec2(1.0, 1.0);
uniform vec2        u_TextureOffset         = vec2(0.0, 0.0);
uniform bool        u_EnableNormalMapping   = false;  // 是否使用法线贴图
uniform float       u_HeightScale           = 0.0;
uniform float       u_Metallic              = 1.0; // 金属度
uniform float       u_Roughness             = 1.0; // 粗糙度const float PI = 3.14159265359;// 计算法向分布函数D,使用Trowbridge-Reitz GGX  
float DistributionGGX(vec3 N, vec3 H, float roughness)
{float a      = roughness*roughness;float a2     = a*a;float NdotH  = max(dot(N, H), 0.0);float NdotH2 = NdotH*NdotH;float num   = a2;float denom = (NdotH2 * (a2 - 1.0) + 1.0);denom = PI * denom * denom;return num / denom;
}float GeometrySchlickGGX(float NdotV, float roughness)
{float r = (roughness + 1.0);float k = (r*r) / 8.0;float num   = NdotV;float denom = NdotV * (1.0 - k) + k;return num / denom;
}// Smith’s method
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{float NdotV = max(dot(N, V), 0.0);float NdotL = max(dot(N, L), 0.0);float ggx2  = GeometrySchlickGGX(NdotV, roughness);float ggx1  = GeometrySchlickGGX(NdotL, roughness);return ggx1 * ggx2;
}// 菲涅尔项,使用Fresnel-Schlick方程
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}/* 将32位数字变成RGBA颜色 */
vec3 UnPack(float p_Target)
{return vec3(// CPU传入的数据是0-255,转换成0-1.0float((uint(p_Target) >> 24) & 0xff)    * 0.003921568627451,float((uint(p_Target) >> 16) & 0xff)    * 0.003921568627451,float((uint(p_Target) >> 8) & 0xff)     * 0.003921568627451);
}bool PointInAABB(vec3 p_Point, vec3 p_AabbCenter, vec3 p_AabbHalfSize)
{return(p_Point.x > p_AabbCenter.x - p_AabbHalfSize.x && p_Point.x < p_AabbCenter.x + p_AabbHalfSize.x &&p_Point.y > p_AabbCenter.y - p_AabbHalfSize.y && p_Point.y < p_AabbCenter.y + p_AabbHalfSize.y &&p_Point.z > p_AabbCenter.z - p_AabbHalfSize.z && p_Point.z < p_AabbCenter.z + p_AabbHalfSize.z);
}/*光照衰减系数,LearnOpenGL中有具体公式*/
float LuminosityFromAttenuation(mat4 p_Light)
{const vec3  lightPosition   = p_Light[0].rgb;const float constant        = p_Light[0][3];const float linear          = p_Light[1][3];const float quadratic       = p_Light[2][3];const float distanceToLight = length(lightPosition - fs_in.FragPos);const float attenuation     = (constant + linear * distanceToLight + quadratic * (distanceToLight * distanceToLight));return 1.0 / attenuation;
}/* 盒状环境光 */
vec3 CalcAmbientBoxLight(mat4 p_Light)
{const vec3  lightPosition   = p_Light[0].rgb;const vec3  lightColor      = UnPack(p_Light[2][0]);const float intensity       = p_Light[3][3];const vec3  size            = vec3(p_Light[0][3], p_Light[1][3], p_Light[2][3]);return PointInAABB(fs_in.FragPos, lightPosition, size) ? lightColor * intensity : vec3(0.0);
}/* 球状环境光 */
vec3 CalcAmbientSphereLight(mat4 p_Light)
{const vec3  lightPosition   = p_Light[0].rgb;const vec3  lightColor      = UnPack(p_Light[2][0]);const float intensity       = p_Light[3][3];const float radius          = p_Light[0][3];return distance(lightPosition, fs_in.FragPos) <= radius ? lightColor * intensity : vec3(0.0);
}void main()
{vec2 texCoords = u_TextureOffset + vec2(mod(fs_in.TexCoords.x * u_TextureTiling.x, 1), mod(fs_in.TexCoords.y * u_TextureTiling.y, 1));vec4 albedoRGBA     = texture(u_AlbedoMap, texCoords) * u_Albedo; // Albedo反照率贴图数据vec3 albedo         = pow(albedoRGBA.rgb, vec3(2.2)); // 这种反照率处理方式与LearOpenGL一致float metallic      = texture(u_MetallicMap, texCoords).r * u_Metallic; // 金属度float roughness     = texture(u_RoughnessMap, texCoords).r * u_Roughness; // 粗糙度float ao            = texture(u_AmbientOcclusionMap, texCoords).r; // 环境光遮蔽AOvec3 normal;if (u_EnableNormalMapping) // 是否使用法线贴图{normal = texture(u_NormalMap, texCoords).rgb; // 法线贴图的原始值normal = normalize(normal * 2.0 - 1.0);   // 法线贴图矢量坐标范围变成-1到1normal = normalize(fs_in.TBN * normal);   // 变换到全局坐标系下}else{normal = normalize(fs_in.Normal); // 使用顶点着色器输出的法线}vec3 N = normalize(normal); vec3 V = normalize(ubo_ViewPos - fs_in.FragPos); // 计算视线方向vec3 F0 = vec3(0.04); F0 = mix(F0, albedo, metallic); // 插值方式得到平面的基础反射率F0// reflectance equationvec3 Lo = vec3(0.0);vec3 ambientSum = vec3(0.0); // 环境光结果for (int i = 0; i < ssbo_Lights.length(); ++i) {// 两种环境光灯光if (int(ssbo_Lights[i][3][0]) == 3){ambientSum += CalcAmbientBoxLight(ssbo_Lights[i]);}else if (int(ssbo_Lights[i][3][0]) == 4){ambientSum += CalcAmbientSphereLight(ssbo_Lights[i]);}else{// calculate per-light radiance// 光源方向vec3 L = int(ssbo_Lights[i][3][0]) == 1 ? -ssbo_Lights[i][1].rgb : normalize(ssbo_Lights[i][0].rgb - fs_in.FragPos);vec3 H = normalize(V + L);// 半程向量float distance    = length(ssbo_Lights[i][0].rgb - fs_in.FragPos);float lightCoeff = 0.0; // 最终到片元处的光强系数 switch(int(ssbo_Lights[i][3][0])){case 0:lightCoeff = LuminosityFromAttenuation(ssbo_Lights[i]) * ssbo_Lights[i][3][3]; // 点光源要考虑随距离衰减break;case 1:lightCoeff = ssbo_Lights[i][3][3]; // 方向光无衰减break;// 聚光灯的计算case 2:const vec3  lightForward    = ssbo_Lights[i][1].rgb;const float cutOff          = cos(radians(ssbo_Lights[i][3][1]));const float outerCutOff     = cos(radians(ssbo_Lights[i][3][1] + ssbo_Lights[i][3][2]));const vec3  lightDirection  = normalize(ssbo_Lights[i][0].rgb - fs_in.FragPos);const float luminosity      = LuminosityFromAttenuation(ssbo_Lights[i]);/* Calculate the spot intensity */const float theta           = dot(lightDirection, normalize(-lightForward)); const float epsilon         = cutOff - outerCutOff;const float spotIntensity   = clamp((theta - outerCutOff) / epsilon, 0.0, 1.0);lightCoeff = luminosity * spotIntensity * ssbo_Lights[i][3][3];break;}vec3 radiance = UnPack(ssbo_Lights[i][2][0]) * lightCoeff;// cook-torrance brdffloat NDF = DistributionGGX(N, H, roughness); // 法线分布函数float G   = GeometrySmith(N, V, L, roughness); // 几何函数vec3 F    = fresnelSchlick(max(dot(H, V), 0.0), F0); // 菲涅尔项vec3 kS = F;vec3 kD = vec3(1.0) - kS;kD *= 1.0 - metallic;vec3 numerator    = NDF * G * F;float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0);vec3 specular     = numerator / max(denominator, 0.001);// add to outgoing radiance Lofloat NdotL = max(dot(N, L), 0.0);Lo += (kD * albedo / PI + specular) * radiance * NdotL; }}vec3 ambient = ambientSum * albedo * ao;// 环境光最终贡献vec3 color = ambient + Lo; // 环境光与cook-torrance模型累加// HDR色调映射color = color / (color + vec3(1.0));// gamma 矫正color = pow(color, vec3(1.0/2.2));  FRAGMENT_COLOR = vec4(color, albedoRGBA.a); // alpha使用反照率贴图
}

Fragment Shader大体分为三部分:

  1. 从贴图中获取反照率、金属度、粗糙度、法线数据
  2. 计算灯光光照,环境光灯光只影响环境光;方向光、聚光灯、点光源会影响光强lightCoeff,最终的光照使用cook-torrance模型进行计算,公式可以参考LearnOpenGL
  3. 最后进行环境光与PBR模型结果进行叠加,并进行色调映射与gamma矫正,这里使用的公式在LearnOpenGL中都有的

总结:
这个PBR Shader整体上与LearnOpenGL中的理论一致,看完LearnOpenGL之后再看这个Shader就比较简单了。

完结总结:

写的这里,这个专栏暂时告一段落了,主要分析了Overload的Render模块,其他的包括UI、物理引擎、音频等模块没有涉及。Overload是一个Demo性质的游戏引擎,其渲染涉只涉及最基础的渲染方式,是对OpenGL简单封装,远远满足不了实际游戏开发需求,只能作为渲染引擎入门。
另外,这个专栏的文章只聚焦一些细节,对应架构涉及很少,因为本人发现架构方面的文章参考性不大,一旦一个软件定型架构方面的改动很困难,读了软件架构的文章也很难在工作中用上。故单纯只介绍一个技术点反而可能拿来直接使用。最后希望能对大家有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125888.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM虚拟机:如何调整堆空间的大小?

对内存的调优 如上所示,从物理角度来说呢,堆内存就是蓝色的区域,从逻辑角度来说,堆内存包含这个红色的部分,调优肯定是条物理的大小了,我们先来看一下物理内存的大小是多少? 如上所示,我们通过maxMemory获取到java虚拟机试图使用的最大内存量,默认为物理内存的1/4,比我…

Linux期末复习——多线程编程

线程概述 线程基本编程 函数说明 pthread_create(): 创建线程&#xff0c;成功返回0pthread_exit(): 主动退出线程&#xff0c;成功返回0pthread_join(): 挂起线程等待结束&#xff0c;成功返回0pthread_cancel在别的线程中终止另一个线程的执行&#xff0c;成功返回0 示例…

初识CSS层叠样式表

文章目录 CSS介绍CSS层叠样式表1.CSS组成2.CSS语法结构3.注释语法4.引入CSS的多种方式 CSS选择器1.CSS基础选择器2.CSS组成选择器3.分组与嵌套4.CSS属性选择器5.CSS伪类选择器6.CSS伪元素选择器 选择器优先级CSS继承选择器的优先级 CSS样式调节字体样式文本颜色文本属性 边框di…

在 Visual Studio 中远程调试 C++ 项目

目录 一、说明二、下载远程工具1. 官网下载2. 自己电脑上拷贝 三、 运行远程工具四、本机Visual Studio配置五、自动部署 一、说明 参考官方文档&#xff1a;https://learn.microsoft.com/zh-cn/visualstudio/debugger/remote-debugging-cpp?viewvs-2022 二、下载远程工具 …

数据库深入浅出,数据库介绍,SQL介绍,DDL、DML、DQL、TCL介绍

一、基础知识&#xff1a; 1.数据库基础知识 数据(Data)&#xff1a;文本信息(字母、数字、符号等)、音频、视频、图片等&#xff1b; 数据库(DataBase)&#xff1a;存储数据的仓库&#xff0c;本质文件&#xff0c;以文件的形式将数据保存到电脑磁盘中 数据库管理系统(DBMS)&…

腾讯云轻量应用服务器的“镜像”操作系统选择方法

腾讯云轻量应用服务器镜像怎么选择&#xff1f;如果是用来搭建网站可以选择宝塔Linux面板腾讯云专享版&#xff0c;镜像系统根据实际使用来选择&#xff0c;腾讯云百科txybk.com来详细说下腾讯云轻量应用服务器镜像的选择方法&#xff1a; 腾讯云轻量应用服务器镜像选择 轻量…

BI零售数据分析,告别拖延症,及时掌握一线信息

在日常的零售数据分析中&#xff0c;经常会因为数据量太大&#xff0c;分析指标太多且计算组合多变而导致数据分析报表难产&#xff0c;零售运营决策被迫拖延症。随着BI数据可视化分析技术的发展&#xff0c;智能化、可视化、自助分析的BI数据分析逐渐成熟&#xff0c;形成一套…

2、NLP文本预处理技术:词干提取和词形还原

一、说明 在上一篇文章中&#xff0c;我们解释了文本预处理的重要性&#xff0c;并解释了一些文本预处理技术。在本文中&#xff0c;我们将介绍词干提取和词形还原主题。 词干提取和词形还原是两种文本预处理技术&#xff0c;用于将单词还原为其基本形式或词根形式。这些技术的…

第03章_基本的SELECT语句

第03章_基本的SELECT语句 讲师&#xff1a;尚硅谷-宋红康&#xff08;江湖人称&#xff1a;康师傅&#xff09; 官网&#xff1a;http://www.atguigu.com 1. SQL概述 1.1 SQL背景知识 1946 年&#xff0c;世界上第一台电脑诞生&#xff0c;如今&#xff0c;借由这台电脑发展…

oracle 重启步骤及踩坑经验

oracle 重启步骤及踩坑经验 标准重启步骤 切换到oracle用户 su - oracle关闭监听 lsnrctl stop杀掉oracle有关进程 ps -ef|grep $ORACLE_SID|grep -v ora_|grep LOCALNO|awk {print $2}|xargs kill -9#查询pid ps -ef|grep $ORACLE_SID|grep -v ora_|grep LOCALNO|awk {p…

恒驰服务 | 华为云数据使能专家服务offering之数仓建设

恒驰大数据服务主要针对客户在进行智能数据迁移的过程中&#xff0c;存在业务停机、数据丢失、迁移周期紧张、运维成本高等问题&#xff0c;通过为客户提供迁移调研、方案设计、迁移实施、迁移验收等服务内容&#xff0c;支撑客户实现快速稳定上云&#xff0c;有效降低时间成本…

上海中优城市万豪酒店推出全新国际IP童趣主题房,独特住宿体验中国首秀

2023年10月30日&#xff0c;中国上海 – 近日&#xff0c;上海中优城市万豪酒店正式推出由全球品牌娱乐公司孩之宝官方授权打造的小马宝莉和变形金刚主题客房&#xff0c;以创意客房、新奇体验和丰富礼遇&#xff0c;为童游家庭或年轻的动漫迷们开启沉浸式入住之旅&#xff0c;…

Latex报错 “Paragraph ended before \Gin@iii was complete“

大家看看自己的模版的前面 加载的包 里面是不是有个 \usepackage{graphics} 问题就在这里&#xff0c;我们需要把它改成\usepackage{graphicx}

xmind2testcase使用与二次开发

xmind2testcase安装、简单二次开发与使用说明&#xff1a; 添加xmind文件备份 重构生成CSV文件 preview预览页面数据显示重构 一、安装 1.xmind2testcase安装 pip install xmind2testcase 2.启动服务 进入默认位置&#xff1a;C:\Users\dell\AppData\Roaming\Python\Py…

集简云slack(自建)无需API开发轻松连接OA、电商、营销、CRM、用户运营、推广、客服等近千款系统

slack是一个工作效率管理平台&#xff0c;让每个人都能够使用无代码自动化和 AI 功能&#xff0c;还可以无缝连接搜索和知识共享&#xff0c;并确保团队保持联系和参与。在世界各地&#xff0c;Slack 不仅受到公司的信任&#xff0c;同时也是人们偏好使用的平台。 官网&#x…

生产级 React 框架介绍

文章目录 生产级 React 框架生产级 React 框架Next.jsRemixGatsbyExpo 如何选择生产级 React 框架 生产级 React 框架 React 是一个流行的 JavaScript 框架&#xff0c;用于构建用户界面。React 框架可以帮助你快速构建高质量的 React 应用&#xff0c;但并不是所有的 React 框…

什么是Web 3.0?

什么是Web 3.0&#xff1f;简而言之&#xff0c;就是第三代互联网。 在回答Web 3.0之前&#xff0c;让我们先看一下Web 1.0和Web 2.0。 互联网革命 Web 1.0&#xff0c;第一代互联网&#xff0c;从互联网诞生到1997年。 在Web 1.0&#xff0c;互联网的信息是静态的只读网页&a…

问题 C: 搬寝室(DP)

算法分析&#xff1a; 题目意思为求n个物品&#xff0c;拿k对使得消耗的体力最少&#xff0c; 或者说是这k对物品&#xff0c;每一对中两件物品的质量差平方最小&#xff0c; 所以要使得质量差的平方小&#xff0c;只能排序后取质量相邻两个物品作为一对&#xff1b; 现在设f…

如何用ChatGPT快速写出一份合格的PPT报告

我们【AI写稿专家】的小伙伴中有很多企业高管和公务员&#xff0c;大家经常有写报告写ppt的需求&#xff0c;下面小编给大家介绍一下我们新发布生成PPT的功能&#xff0c;很简单很方便&#xff0c;看完大家不到1分钟就能生成一份拿得出手的PPT报告&#xff0c;再也不用费尽心思…

【设计模式】第25节:行为型模式之“访问者模式”

一、简介 访问者模式允许一个或者多个操作应用到一组对象上&#xff0c;设计意图是解耦操作和对象本身&#xff0c;保持类职责单一、满足开闭原则以及应对代码的复杂性。 二、优点 分离操作和数据结构增加新操作更容易集中化操作 三、适用场景 数据结构稳定&#xff0c;操…