数学建模-蒙特卡洛模拟

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

%%  蒙特卡罗用于模拟三门问题
clear;clc
%% (1)预备知识
% randi([a,b],m,n)函数可在指定区间[a,b]内随机取出大小为m*n的整数矩阵
randi([1,5],5,8) %在区间[1,5]内随机取出大小为5*8的整数矩阵
%      2     5     4     5     3     1     4     2
%      3     3     1     5     4     2     1     2
%      4     1     3     3     2     2     5     1
%      5     3     3     4     4     5     4     4
%      4     2     3     4     2     4     2     4
randi([1,5])   %在区间[1,5]内随机取出1个整数
%     3% 字符串的连接方式:(1)['字符串1','字符串2'] (2)strcat('字符串1','字符串2') (第一期视频第一讲)
['数学建模','学习交流']
strcat('数学建模','学习交流')% num2str函数:将数值转换为字符串 (第一期视频第一讲)
mystr = num2str(1224)  % 注意观察工作区的mystr这个变量的值
disp([num2str(1224),'祝大家平安夜平平安安'])  % disp函数是输出函数%% (2)代码部分(在成功的条件下的概率)
n = 100000;  % n代表蒙特卡罗模拟重复次数
a = 0;  % a表示不改变主意时能赢得汽车的次数
b = 0;  % b表示改变主意时能赢得汽车的次数
for i= 1 : n  % 开始模拟n次x = randi([1,3]);  % 随机生成一个1-3之间的整数x表示汽车出现在第x扇门后y = randi([1,3]);  % 随机生成一个1-3之间的整数y表示自己选的门% 下面分为两种情况讨论:x=y和x~=yif x == y   % 如果x和y相同,那么我们只有不改变主意时才能赢a = a + 1;     b = b + 0;else  % x ~= y ,如果x和y不同,那么我们只有改变主意时才能赢a = a + 0;     b = b +1;end
end
disp(['蒙特卡罗方法得到的不改变主意时的获奖概率为:', num2str(a/n)]);
disp(['蒙特卡罗方法得到的改变主意时的获奖概率为:', num2str(b/n)]);%% (3)考虑失败情况的代码(无条件概率)
n = 100000;  % n代表蒙特卡罗模拟重复次数
a = 0;  % a表示不改变主意时能赢得汽车的次数
b = 0;  % b表示改变主意时能赢得汽车的次数
c = 0;  % c表示没有获奖的次数
for i= 1 : n  % 开始模拟n次x = randi([1,3]);  % 随机生成一个1-3之间的整数x表示汽车出现在第x扇门后y = randi([1,3]);  % 随机生成一个1-3之间的整数y表示自己选的门change = randi([0, 1]); % change =0  不改变主意,change = 1 改变主意% 下面分为两种情况讨论:x=y和x~=yif x == y   % 如果x和y相同,那么我们只有不改变主意时才能赢if change == 0  % 不改变主意a = a + 1; else  % 改变了主意c= c+1;endelse  % x ~= y ,如果x和y不同,那么我们只有改变主意时才能赢if change == 0  % 不改变主意c = c + 1; else  % 改变了主意b= b + 1;endend
end
disp(['蒙特卡罗方法得到的不改变主意时的获奖概率为:', num2str(a/n)]);
disp(['蒙特卡罗方法得到的改变主意时的获奖概率为:', num2str(b/n)]);
disp(['蒙特卡罗方法得到的没有获奖的概率为:', num2str(c/n)]);

在这里插入图片描述
在这里插入图片描述

%%  蒙特卡罗模拟排队问题%% (1)预备知识
% normrnd(MU,SIGMA):生成一个服从正态分布(MU参数代表均值,SIGMA参数代表标准差,方差开根号是标准差)的随机数
normrnd(10,2)  % 均值为10 标准差为2(方差为4)的正态分布随机数
% exprnd(M)表示生成一个均值为M的指数分布随机数(其对应的参数为1/M)
exprnd(5)  % 均值为5的指数分布随机数(对应的参数为0.2)
% mean函数是用来求解均值的函数(第一期视频第五讲)
mean([1,2,3])
% tic函数和toc函数可以用来返回代码运行的时间,例如我们要计算一段代码的运行时间,就可以在这段代码前加上tic,在这段代码后加上toc (我的微信公众号"数学建模学习交流"中有一篇推送《为什么要对代码初始化》中使用过这对函数)
tic
a = 2^100
toc%% (2)模型中出现的变量的说明
% x(i)表示第i-1个客户和第i个客户到达的间隔时间,服从参数为0.1的指数分布
% y(i)表示第i个客户的服务持续时间,服从均值为10方差为4(标准差为2)的正态分布 (若小于1则按1计算)
% c(i)表示第i个客户的到达时间,那么c(i) = c(i-1) + x(i),初始值c0=0
% b(i)表示第i个客户开始服务的时间
% e(i)表示第i个客户结束服务的时间,初始值e0=0
% 第i个客户结束服务的时间 = 第i个客户开始服务的时间 + 第i个客户的服务持续时间
% 即:e(i) = b(i) + y(i)
% 第i个客户开始服务的时间取决于该客户的到达时间和上一个客户结束服务的时间
% 即:b(i) = max(c(i),e(i-1)),初始值b1=c1;
% 第i个客户等待的时间 = 第i个客户开始服务的时间 - 第i个客户到达银行的时间
% 即:wait(i) = b(i) - c(i)
% w表示所有客户等待时间的总和
% 假设一天内银行最终服务了n个顾客,那么客户的平均等待时间t = w/n%% (3)问题1的代码
clear
tic  %计算tic和toc中间部分的代码的运行时间
i = 1;  % i表示第i个客户,最开始取i=1
w = 0;  % w用来表示所有客户等待的总时间,初始化为0
e0 = 0;  c0 = 0;   % 初始化e0和c0为0
x(1) = exprnd(10);  % 第0个客户(假想的)和第1个客户到达的时间间隔
c(1) = c0 + x(1);  % 第1个客户到达的时间
b(1) = c(1); % 第1个客户的开始服务的时间
while b(i) <= 480  % 开始设置循环,只要第i个顾客开始服务的时间(时刻)小于480,就可以对其服务(银行每天工作8小时,折换为分钟就是480分钟)y(i) = normrnd(10,2); % 第i个客户的服务持续时间,服从均值为10方差为4(标准差为2)的正态分布if y(i) < 1  % 根据题目的意思:若服务持续时间不足一分钟,则按照一分钟计算y(i) = 1;ende(i) = b(i) + y(i); % 第i个客户结束服务的时间 = 第i个客户开始服务的时间 + 第i个客户的服务持续时间wait(i) = b(i) - c(i); % 第i个客户等待的时间 = 第i个客户开始服务的时间 - 第i个客户到达银行的时间w = w + wait(i); % 更新所有客户等待的总时间i = i + 1; % 增加一名新的客户x(i) = exprnd(10); % 这位新客户和上一个客户到达的时间间隔c(i) = c(i-1) + x(i); % 这位新客户到达银行的时间 = 上一个客户到达银行的时间 + 这位新客户和上一个客户到达的时间间隔b(i) = max(c(i),e(i-1)); % 这个新客户开始服务的时间取决于其到达时间和上一个客户结束服务的时间
end
n = i-1; % n表示银行一天8小时一共服务的客户人数
t = w/n; % 客户的平均等待时间
disp(['银行一天8小时一共服务的客户人数为: ',num2str(n)])
disp(['客户的平均等待时间为: ',num2str(t)])
toc  %计算tic和toc中间部分的代码的运行时间%% (4)问题2的代码
clear
tic  %计算tic和toc中间部分的代码的运行时间
day = 100;  % 假设模拟100天
n = zeros(day,1); % 初始化用来保存每日接待客户数结果的矩阵
t = zeros(day,1); % 初始化用来保存每日客户平均等待时长的矩阵
for k = 1:dayi = 1;  % i表示第i个客户,最开始取i=1w = 0;  % w用来表示所有客户等待的总时间,初始化为0e0 = 0;  c0 = 0;   % 初始化e0和c0为0x(1) = exprnd(10);  % 第0个客户(假想的)和第1个客户到达的时间间隔c(1) = c0 + x(1);  % 第1个客户到达的时间b(1) = c(1); % 第1个客户的开始服务的时间while b(i) <= 480  % 开始设置循环,只要第i个顾客开始服务的时间(时刻)小于480,就可以对其服务(银行每天工作8小时,折换为分钟就是480分钟)y(i) = normrnd(10,2); % 第i个客户的服务持续时间,服从均值为10方差为4(标准差为2)的正态分布if y(i) < 1  % 根据题目的意思:若服务持续时间不足一分钟,则按照一分钟计算y(i) = 1;ende(i) = b(i) + y(i); % 第i个客户结束服务的时间 = 第i个客户开始服务的时间 + 第i个客户的服务持续时间wait(i) = b(i) - c(i); % 第i个客户等待的时间 = 第i个客户开始服务的时间 - 第i个客户到达银行的时间w = w + wait(i); % 更新所有客户等待的总时间i = i + 1; % 增加一名新的客户x(i) = exprnd(10); % 这位新客户和上一个客户到达的时间间隔c(i) = c(i-1) + x(i); % 这位新客户到达银行的时间 = 上一个客户到达银行的时间 + 这位新客户和上一个客户到达的时间间隔b(i) = max(c(i),e(i-1)); % 这个新客户开始服务的时间取决于其到达时间和上一个客户结束服务的时间endn(k) = i-1; % n(k)表示银行第k天服务的客户人数t(k) = w/n(k); % t(k)表示该银行第k天客户的平均等待时间
end
disp([num2str(day),'个工作日中,银行每日平均服务的客户人数为: ',num2str(mean(n))])
disp([num2str(day),'个工作日中,银行每日客户的平均等待时间为: ',num2str(mean(t))])
toc  %计算tic和toc中间部分的代码的运行时间

在这里插入图片描述

在这里插入图片描述

%%  蒙特卡罗求解有约束的非线性规划问题
% max f(x) = x1*x2*x3
% s.t.
% (1) -x1+2*x2+2*x3>=0
% (2) x1+2*x2+2*x3<=72
% (3) x2<=20 & x2>=10
% (4) x1-x2 == 10%% (1)预备知识
%  (1) format long g  可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
5/7
5895*514100
format long g
5/7
5895*514100
%  (2)unifrnd(a,b,m,n)可以输出在[a,b]之间均匀分布的随机数组成的m行n列的矩阵。(等价于 a + rand(m,n)*(b-a))
unifrnd(0,5,4,3)
%           4.07361843196589          3.16179623112705          4.78753417717149
%            4.5289596853781         0.487702024997048          4.82444267599638
%           0.63493408146753          1.39249109433524         0.788065408387741
%            4.5668792806951          2.73440759602492          4.85296390880308%% (2)代码部分
clc,clear;
tic %计算tic和toc中间部分的代码的运行时间
n=10000000; %生成的随机数组数
x1=unifrnd(20,30,n,1);  % 生成在[20,30]之间均匀分布的随机数组成的n行1列的向量构成x1
x2=x1 - 10;
x3=unifrnd(-10,16,n,1);  % 生成在[-10,16]之间均匀分布的随机数组成的n行1列的向量构成x3
fmax=-inf; % 初始化函数f的最大值为负无穷(后续只要找到一个比它大的我们就对其更新)
for i=1:nx = [x1(i), x2(i), x3(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2, x3]if (-x(1)+2*x(2)+2*x(3)>=0)  &  (x(1)+2*x(2)+2*x(3)<=72)     % 判断是否满足条件result = x(1)*x(2)*x(3);  % 如果满足条件就计算函数值if  result  > fmax  % 如果这个函数值大于我们之前计算出来的最大值fmax = result;  % 那么就更新这个函数值为新的最大值X = x;  % 并且将此时的x1 x2 x3保存到一个变量中endend
end
disp(strcat('蒙特卡罗模拟得到的最大值为',num2str(fmax)))
disp('最大值处x1 x2 x3的取值为:')
disp(X)
toc %计算tic和toc中间部分的代码的运行时间%% (3)缩小范围重新模拟得到更加精确的取值
clc,clear;
tic %计算tic和toc中间部分的代码的运行时间
n=10000000; %生成的随机数组数
x1=unifrnd(22,23,n,1);  % 生成在[22,23]之间均匀分布的随机数组成的n行1列的向量构成x1
x2=x1 - 10;
x3=unifrnd(11,13,n,1);  % 生成在[11,13]之间均匀分布的随机数组成的n行1列的向量构成x3
fmax=-inf; % 初始化函数f的最大值为负无穷(后续只要找到一个比它大的我们就对其更新)
for i=1:nx = [x1(i), x2(i), x3(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2, x3]if (-x(1)+2*x(2)+2*x(3)>=0)  &  (x(1)+2*x(2)+2*x(3)<=72)     % 判断是否满足条件result = x(1)*x(2)*x(3);  % 如果满足条件就计算函数值if  result  > fmax  % 如果这个函数值大于我们之前计算出来的最大值fmax = result;  % 那么就更新这个函数值为新的最大值X = x;  % 并且将此时的x1 x2 x3保存到一个变量中endend
end
disp(strcat('蒙特卡罗模拟得到的最大值为',num2str(fmax)))
disp('最大值处x1 x2 x3的取值为:')
disp(X)
toc %计算tic和toc中间部分的代码的运行时间
%% 书店买书问题的蒙特卡罗的模拟
%% (1)预备知识
% (1)unique函数: 剔除一个矩阵或者向量的重复值,并将结果按照从小到大的顺序排列  
% adj.	唯一的; 独一无二的   [ju'ni:k]
unique([1 2 5; 6 8 9;2 4 6])   
unique([5 6 8 8 4 1 6 2 2 4 8 4 5 6])% (2)randi([a,b],m,n)函数可在指定区间[a,b]内随机取出大小为m*n的整数矩阵
randi([-5,5],2,6)%% (2)代码求解
min_money = +Inf;  % 初始化最小的花费为无穷大,后续只要找到比它小的就更新
min_result = randi([1, 6],1,5);  % 初始化五本书都在哪一家书店购买,后续我们不断对其更新
%若min_result = [5 3 6 2 3],则解释为:第1本书在第5家店买,第2本书在第3家店买,第3本书在第6家店买,第4本书在第2家店买,第5本书在第3家店买  
n = 100000;  % 蒙特卡罗模拟的次数
M = [18	 39	29	48	5924	45	23	54	4422	45	23	53	5328	47	17	57	4724	42	24	47	5927	48	20	55	53];  % m_ij  第j本书在第i家店的售价
freight = [10 15 15 10 10 15];  % 第i家店的运费
for k = 1:n  % 开始循环result = randi([1, 6],1,5); % 在1-6这些整数中随机抽取一个1*5的向量,表示这五本书分别在哪家书店购买index = unique(result);  % 在哪些商店购买了商品,因为我们等下要计算运费money = sum(freight(index)); % 计算买书花费的运费% 计算总花费:刚刚计算出来的运费 + 五本书的售价for i = 1:5   money = money + M(result(i),i);  endif money < min_money  % 判断刚刚随机生成的这组数据的花费是否小于最小花费,如果小于的话min_money = money  % 我们更新最小的花费min_result = result % 用这组数据更新最小花费的结果end
end
min_money   % 18+39+48+17+47+20
min_result

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

%%  蒙特卡罗用于模拟导弹追击问题
% 注意,模拟导弹追击问题更像是一种仿真模拟的方法。这里本质上没有用到随机数,因此严格意义上不能称为蒙特卡罗。
clear;clc
%% (1)预备知识
% mod(m,n)表示求m/n的余数
mod(8,3)
mod(1000,50)% 设置横纵坐标的范围并标上字符
x = 1:0.01:3;
y = x .^ 2;
plot(x,y)  % 画出x和y的图形
axis([0 3 0 10])  % 设置横坐标范围为[0, 3] 纵坐标范围为[0, 10]
pause(3)  % 暂停3秒后再继续接下来的命令
text(2,4,'清风')  % 在坐标为(2,4)的点上标上字符串:清风
close % 关闭图形窗口%% (2) 代码求解
% 1. 不画追击的示意图
clear;clc
v=200; % 任意给定B船的速度(后期我们可以再改的)
dt=0.0000001; % 定义时间间隔
x=[0,20]; % 定义导弹和B船的横坐标分别为x(1)和x(2)
y=[0,0]; % 定义导弹和B船的纵坐标分别为y(1)和y(2)
t=0; % 初始化导弹击落B船的时间
d=0; % 初始化导弹飞行的距离
m=sqrt(2)/2;   % 将sqrt(2)/2定义为一个常量,使后面看起来很简洁
dd=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2); % 导弹与B船的距离
while(dd>=0.001)  % 只要两者的距离足够大,就一直循环下去。(两者距离足够小时表示导弹击中,这里的临界值要结合dt来取,否则可能导致错过交界处的情况)t=t+dt; % 更新导弹击落B船的时间d=d+3*v*dt; % 更新导弹飞行的距离x(2)=20+t*v*m;  y(2)=t*v*m;   % 计算新的B船的位置 (注:m=sqrt(2)/2)dd=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2);  % 更新导弹与B船的距离tan_alpha=(y(2)-y(1))/(x(2)-x(1));   % 计算斜率,即tan(α)cos_alpha=sqrt(1/(1+tan_alpha^2));   % sec(α)^2 = (1+tan(α)^2)sin_alpha=sqrt(1-cos_alpha^2);  % sin(α)^2 +cos(α)^2 = 1x(1)=x(1)+3*v*dt*cos_alpha;   y(1)=y(1)+3*v*dt*sin_alpha; % 计算新的导弹的位置if d>50  % 导弹的有效射程为50个单位disp('导弹没有击中B船');break;  % 退出循环endif d<=50 & dd<0.001   % 导弹飞行的距离小于50个单位且导弹和B船的距离小于0.001(表示击中)disp(['导弹飞行',num2str(d),'单位后击中B船'])disp(['导弹飞行的时间为',num2str(t*60),'分钟'])end
end% 2. 画追击的示意图
clear;clc
v=200; % 任意给定B船的速度(后期我们可以再改的)
dt=0.0000001; % 定义时间间隔
x=[0,20]; % 定义导弹和B船的横坐标分别为x(1)和x(2)
y=[0,0]; % 定义导弹和B船的纵坐标分别为y(1)和y(2)
t=0; % 初始化导弹击落B船的时间
d=0; % 初始化导弹飞行的距离
m=sqrt(2)/2;   % 将sqrt(2)/2定义为一个常量,使后面看起来很简洁
dd=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2); % 导弹与B船的距离
for i=1:2plot(x(i),y(i),'.k','MarkerSize',1);  % 画出导弹和B船所在的坐标,点的大小为1,颜色为黑色(k),用小点表示grid on;  % 打开网格线hold on;  % 不关闭图形,继续画图
end
axis([0 30 0 10])  % 固定x轴的范围为0-30  固定y轴的范围为0-10
k = 0;  % 引入一个变量  为了控制画图的速度(因为Matlab中画图的速度超级慢)
while(dd>=0.001)  % 只要两者的距离足够大,就一直循环下去。(两者距离足够小时表示导弹击中,这里的临界值要结合dt来取,否则可能导致错过交界处的情况)t=t+dt; % 更新导弹击落B船的时间d=d+3*v*dt; % 更新导弹飞行的距离x(2)=20+t*v*m;  y(2)=t*v*m;   % 计算新的B船的位置 (注:m=sqrt(2)/2)dd=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2);  % 更新导弹与B船的距离tan_alpha=(y(2)-y(1))/(x(2)-x(1));   % 计算斜率,即tan(α)cos_alpha=sqrt(1/(1+tan_alpha^2));   % 利用公式:sec(α)^2 = (1+tan(α)^2)  计算出cos(α)sin_alpha=sqrt(1-cos_alpha^2);  % 利用公式: sin(α)^2 +cos(α)^2 = 1  计算出sin(α)x(1)=x(1)+3*v*dt*cos_alpha;   y(1)=y(1)+3*v*dt*sin_alpha;   % 计算新的导弹的位置k = k +1 ;  if mod(k,500) == 0   % 每刷新500次时间就画出下一个导弹和B船所在的坐标  mod(m,n)表示求m/n的余数for i=1:2plot(x(i),y(i),'.k','MarkerSize',1);hold on; % 不关闭图形,继续画图endpause(0.001);  % 暂停0.001s后再继续下面的操作endif d>50  % 导弹的有效射程为50个单位disp('导弹没有击中B船');break;  % 退出循环endif d<=50 & dd<0.001   % 导弹飞行的距离小于50个单位且导弹和B船的距离小于0.001(表示击中)disp(['导弹飞行',num2str(d),'个单位后击中B船'])disp(['导弹飞行的时间为',num2str(t*60),'分钟'])end
end

在这里插入图片描述

%% TSP(旅行商问题)
%% (1)预备知识
plot([1,2],[5,10],'-o') % 画出一条线段,x范围是[1, 2] ,y范围是[5,10]
text(1.5,7.5,'清风') % 在坐标(1.5,7.5)处标上文本:清风
close% randperm函数的用法
randperm(5)  % 生成1-5组成的一个随机序列(类似于洗牌的操作)
%      3     5     1     2     4
%      1     4     5     3     2%% (2)代码求解
clear;clc
% 只有10个城市的简单情况coord =[0.6683 0.6195 0.4    0.2439 0.1707 0.2293 0.5171 0.8732 0.6878 0.8488 ;0.2536 0.2634 0.4439 0.1463 0.2293 0.761  0.9414 0.6536 0.5219 0.3609]' ;  % 城市坐标矩阵,n行2列
% 38个城市,TSP数据集网站(http://www.tsp.gatech.edu/world/djtour.html) 上公测的最优结果6656。% coord = [11003.611100,42102.500000;11108.611100,42373.888900;11133.333300,42885.833300;11155.833300,42712.500000;11183.333300,42933.333300;11297.500000,42853.333300;11310.277800,42929.444400;11416.666700,42983.333300;11423.888900,43000.277800;11438.333300,42057.222200;11461.111100,43252.777800;11485.555600,43187.222200;11503.055600,42855.277800;11511.388900,42106.388900;11522.222200,42841.944400;11569.444400,43136.666700;11583.333300,43150.000000;11595.000000,43148.055600;11600.000000,43150.000000;11690.555600,42686.666700;11715.833300,41836.111100;11751.111100,42814.444400;11770.277800,42651.944400;11785.277800,42884.444400;11822.777800,42673.611100;11846.944400,42660.555600;11963.055600,43290.555600;11973.055600,43026.111100;12058.333300,42195.555600;12149.444400,42477.500000;12286.944400,43355.555600;12300.000000,42433.333300;12355.833300,43156.388900;12363.333300,43189.166700;12372.777800,42711.388900;12386.666700,43334.722200;12421.666700,42895.555600;12645.000000,42973.333300];n = size(coord,1);  % 城市的数目figure(1)  % 新建一个编号为1的图形窗口
plot(coord(:,1),coord(:,2),'o');   % 画出城市的分布散点图
for i = 1:ntext(coord(i,1)+0.01,coord(i,2)+0.01,num2str(i))   % 在图上标上城市的编号(加上0.01表示把文字的标记往右上方偏移一点)
end
hold on % 等一下要接着在这个图形上画图的d = zeros(n);   % 初始化两个城市的距离矩阵全为0
for i = 2:n  for j = 1:i  coord_i = coord(i,:);   x_i = coord_i(1);     y_i = coord_i(2);  % 城市i的横坐标为x_i,纵坐标为y_icoord_j = coord(j,:);   x_j = coord_j(1);     y_j = coord_j(2);  % 城市j的横坐标为x_j,纵坐标为y_jd(i,j) = sqrt((x_i-x_j)^2 + (y_i-y_j)^2);   % 计算城市i和j的距离end
end
d = d+d';   % 生成距离矩阵的对称的一面min_result = +inf;  % 假设最短的距离为min_result,初始化为无穷大,后面只要找到比它小的就对其更新
min_path = [1:n];   % 初始化最短的路径就是1-2-3-...-n
N = 10000000;  % 蒙特卡罗模拟的次数
for k = 1:N  % 开始循环result = 0;  % 初始化走过的路程为0path = randperm(n);  % 生成一个1-n的随机打乱的序列for i = 1:n-1  result = d(path(i),path(i+1)) + result;  % 按照这个序列不断的更新走过的路程这个值endresult = d(path(1),path(n)) + result;  % 别忘了加上从最后一个城市返回到最开始那个城市的距离if result < min_result  % 判断这次模拟走过的距离是否小于最短的距离,如果小于就更新最短距离和最短的路径min_path = path;min_result = resultend
end
min_path
min_path = [min_path,min_path(1)];   % 在最短路径的最后面加上一个元素,即第一个点(我们要生成一个封闭的图形)
n = n+1;  % 城市的个数加一个(紧随着上一步)
for i = 1:n-1 j = i+1;coord_i = coord(min_path(i),:);   x_i = coord_i(1);     y_i = coord_i(2); coord_j = coord(min_path(j),:);   x_j = coord_j(1);     y_j = coord_j(2);plot([x_i,x_j],[y_i,y_j],'-')    % 每两个点就作出一条线段,直到所有的城市都走完pause(0.5)  % 暂停0.5s再画下一条线段hold on
end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12515.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(无人机方向)ros小白之键盘控制无人机(终端方式)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一&#xff1a;配置pycharm的ros开发环境二&#xff1a;核心代码讲解三 效果演示XTDrone 四 完整代码 前言 ubuntu 18.04 pycharm ros melodic 做一个在终端中…

微信小程序——同一控件的点击与长按事件共存的解决方案

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

植物一区HR | 植物生理组+转录组:揭示豆科植物响应干旱胁迫机制

PlantArray 植物高通量生理学表型监测系统 是一套以植物生理学为基础的高精度&#xff0c;高通量&#xff0c;自动化表型监测系统&#xff0c;集合实验设置、数据分析、决策工具于一身&#xff0c;能够高通量实时动态监测并进行全天候生理及环境参数采集&#xff0c;是进行植物…

网络设备中的配置文件管理

建立强大网络的第一步是为灾难和网络中断做好准备&#xff0c;许多企业在中断期间遭受损失&#xff0c;因为他们缺乏备份计划并且配置管理不达标&#xff0c;使用配置文件管理工具进行适当的配置文件管理不仅有助于处理网络中断&#xff0c;还有助于优化网络性能。 使用配置文…

海尔设计借助亚马逊云科技生成式AI,实现端到端的云上工业设计解决方案

海尔创新设计中心&#xff08;以下简称海尔设计&#xff09;成立于1994年&#xff0c;目前拥有400多名设计师&#xff0c;为海尔智家旗下七大品牌全球的所有产品提供设计创新和模式探索。亚马逊云科技为海尔设计提供了四个完整的云上解决方案&#xff0c;全面替代自有机房&…

Vue3 word如何转成pdf代码实现

&#x1f642;博主&#xff1a;锅盖哒 &#x1f642;文章核心&#xff1a;word如何转换pdf 目录 1.前端部分 2.后端部分 在Vue 3中&#xff0c;前端无法直接将Word文档转换为PDF&#xff0c;因为Word文档的解析和PDF的生成通常需要在后端进行。但是&#xff0c;你可以通过Vu…

HCIA 第二课总结

配置网络设备的明文密钥实验组网 实验拓扑 将一个路由器使用配置口进行连接 sys #进入系统视图模式 sysname RTA #给设备命名 user-interface console 0 #进入用户接口配置界面 authentication-mode password #配置认证模式为密钥认证 set authentication password ciphe…

百题千解计划【CSDN每日一练】订班服(附解析+多种实现方法:Python、Java、C、C++、C#、Go、JavaScript)

如果决意去做一件事了,就不要再问自己和别人值不值得,心甘情愿才能理所当然,理所当然才会义无反顾。 🎯作者主页: 追光者♂🔥 🌸个人简介: 💖[1] 计算机专业硕士研究生💖 🌟[2] 2022年度博客之星人工智能领域TOP4🌟 🏅[3] 阿里云社区特邀专…

LeetCode刷题笔记-287题寻找重复数

LeetCode 287 寻找重复数 难度&#xff1a;中等 题目&#xff1a; 给定一个包含 n 1 个整数的数组 nums &#xff0c;其数字都在 [1, n] 范围内&#xff08;包括 1 和 n&#xff09;&#xff0c;可知至少存在一个重复的整数。 假设 nums 只有 一个重复的整数 &#xff0c;返回…

软件外包开发测试管理工具

测试是软件工程中非常重要的一个环节&#xff0c;在上线前必须需要经过严格的测试才能确保上线后软件系统长时间运行。有大量的软件开发和测试管理工具&#xff0c;每一个工具都有自己的特点&#xff0c;今天和大家分享一些常见的工具&#xff0c;希望对大家有所帮助。北京木奇…

【Spring Boot丨序列化、反序列化】

序列化、反序列化 概述Jackson 序列化和反序列化简介自定义序列化器注册外部序列化程序&#xff1a; 指定类的 Json 序列化、反序列化 主页传送门&#xff1a;&#x1f4c0; 传送 概述 序列化是将对象转换为字节序列的过程&#xff0c;而反序列化则是将字节序列恢复为对象的过…

监听镜像版本变化触发 GitOps工作流

文章目录 前言工作流总览安装和配置 ArgoCD Image Updater创建 Image Pull Secret&#xff08;可选&#xff09;创建 Helm Chart 仓库创建 ArgoCD Application删除旧应用&#xff08;可选&#xff09;配置仓库访问权限创建 ArgoCD 应用 体验 GitOps 工作流总结 前言 在【GitOps…

基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作方法

文献计量学是指用数学和统计学的方法&#xff0c;定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体&#xff0c;注重量化的综合性知识体系。特别是&#xff0c;信息可视化技术手段和方法的运用&#xff0c;可直观的展示主题的研究发展历程、研究现状、研究…

【小波尺度谱】从分段离散小波变换计算小波尺度谱研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

用于系统监控及进程管理python库之psutil

前言 对于一个job级别应用再进行测试的过程中&#xff0c;不可避免测试该服务的一些性能&#xff0c;比如占有cpu的使用量&#xff0c;使用的memory的大小等&#xff0c;比较简单的方式是在服务中起一个并行的线程&#xff0c;每隔一段时间打印这些关注量的大小&#xff0c;之后…

invalid use of incomplete type class ui(new Ui::MainWindow)报错,解决方案

invalid use of incomplete type class ui(new Ui::MainWindow报错&#xff0c;解决方案 原因解决方案 原因 就是在我改控件button的名字的时候&#xff0c;没有选中控件&#xff0c;导致吧mainwindow的名字改了。。。 解决方案 吧mainwindow的名字改回来 MainWindow 完美解…

element 级联 父传子

html代码例子 父组件 <el-cascaderstyle"width: 100%"change"unitIdChange":options"unitOptions"filterablev-model"formInline.unitId":props"unitProps"/></el-form-item>//改变级联传值到这个组件里面<r…

HTML再出发

HTML再出发 注意事项VScode相关排版标签语义化块级元素和行内元素文本标签img标签图片格式超链接 注意事项 VScode相关 vscode必须打开一个文件夹才能使用liveServer&#xff0c;只打开一个文件无法使用liveServer功能。网页编写不标准&#xff0c;缺少head&#xff0c;body等…

Sestra 实用教程(二)方程求解器

目 录 一、前言二、超单元分析三、惯性释放四、模态叠加法4.1 Eigenvalue solvers4.2 Static back substitution 五、模态综合法六、Master-Slave七、参考文献 一、前言 SESAM &#xff08;Super Element Structure Analysis Module&#xff09;是由挪威船级社&#xff08;DNV-…

【GO】go语言入门实战 —— 命令行在线词典

文章目录 程序介绍抓包代码生成生成request body解析respond body完整代码 字节青训营基础班学习记录。 程序介绍 在运行程序的时候以命令行的形式输入要查询的单词&#xff0c;然后程序返回单词的音标、释义等信息。 示例如下&#xff1a; 抓包 我们选择与网站https://fany…