20.2 OpenSSL 非对称RSA加解密算法

RSA算法是一种非对称加密算法,由三位数学家RivestShamirAdleman共同发明,以他们三人的名字首字母命名。RSA算法的安全性基于大数分解问题,即对于一个非常大的合数,将其分解为两个质数的乘积是非常困难的。

RSA算法是一种常用的非对称加密算法,与对称加密算法不同,RSA算法使用一对非对称密钥,分别为公钥和私钥,公钥和私钥是成对生成的,公钥可以公开,用于加密数据和验证数字签名,而私钥必须保密,用于解密数据和生成数字签名。因此,RSA算法的使用场景是公钥加密、私钥解密,或者私钥加密、公钥解密。

OpenSSL库中提供了针对此类算法的支持,但在使用时读者需要自行生成公钥与私钥文件,在开发工具包内有一个openssl.exe程序,该程序则是用于生成密钥对的工具,当我们需要使用非对称加密算法时,则可以使用如下命令生成公钥和私钥。

  • 生成私钥: openssl genrsa -out rsa_private_key.pem 1024
  • 生成公钥: openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem

读者执行上述两条命令后即可得到rsa_private_key.pem私钥,以及rsa_public_key.pem公钥,如下图所示;

在使用非对称加密时,读者需要分别导入所需要的头文件,这其中就包括了rsa.h用于处理加密算法的库,以及pem.h用于处理私钥的库,这两个库是使用RSA时必须要导入的。

#include <iostream>
#include <string>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/crypto.h>extern "C"
{
#include <openssl/applink.c>
}#pragma comment(lib,"libssl.lib")
#pragma comment(lib,"libcrypto.lib")

20.2.1 公钥加密私钥解密

RSA公钥用于加密数据和验证数字签名,私钥用于解密数据和生成数字签名,通常用于公钥加密、私钥解密的场景,具有较高的安全性,但加密和解密速度较慢,因此通常采用一种混合加密方式,即使用RSA算法加密对称加密算法中的密钥,再使用对称加密算法加密数据,以保证数据的机密性和加密解密的效率。

首先我们来实现公钥加密功能,如下Public_RsaEncrypt函数,该函数接受两个参数,分别是需要加密的字符串以及公钥文件,代码中首先通过fopen()打开一个公钥文件,并通过PEM_read_RSA_PUBKEY函数读入并初始化公钥文件,接着调用RSA_public_encrypt该函数主要用于实现公钥加密,当加密成功后返回加密后的文本内容,类型是字符串。

// 公钥加密
std::string Public_RsaEncrypt(const std::string& str, const std::string& path)
{RSA* rsa = NULL;FILE* file = NULL;char* ciphertext = NULL;int len = 0;int ret = 0;file = fopen(path.c_str(), "r");if (file == NULL){return std::string();}rsa = PEM_read_RSA_PUBKEY(file, NULL, NULL, NULL);if (rsa == NULL){ERR_print_errors_fp(stdout);fclose(file);return std::string();}len = RSA_size(rsa);ciphertext = (char*)malloc(len + 1);if (ciphertext == NULL){RSA_free(rsa);fclose(file);return std::string();}memset(ciphertext, 0, len + 1);ret = RSA_public_encrypt(str.length(), (unsigned char*)str.c_str(), (unsigned char*)ciphertext, rsa, RSA_PKCS1_PADDING);if (ret < 0){ERR_print_errors_fp(stdout);free(ciphertext);RSA_free(rsa);fclose(file);return std::string();}std::string s(ciphertext, ret);free(ciphertext);RSA_free(rsa);fclose(file);return s;
}

与公钥加密方法类似,Private_RsaDecrypt函数用于使用私钥进行解密,该函数接受两个参数,第一个参数是加密后的字符串数据,第二个参数则是私钥的具体路径,函数中通过PEM_read_RSAPrivateKey实现对私钥的初始化,并通过RSA_private_decrypt函数来实现对特定字符串的解密操作。

// 私钥解密
std::string Private_RsaDecrypt(const std::string& str, const std::string& path)
{RSA* rsa = NULL;FILE* file = NULL;char* plaintext = NULL;int len = 0;int ret = 0;file = fopen(path.c_str(), "r");if (file == NULL){return std::string();}rsa = PEM_read_RSAPrivateKey(file, NULL, NULL, NULL);if (rsa == NULL){ERR_print_errors_fp(stdout);fclose(file);return std::string();}len = RSA_size(rsa);plaintext = (char*)malloc(len + 1);if (plaintext == NULL){RSA_free(rsa);fclose(file);return std::string();}memset(plaintext, 0, len + 1);ret = RSA_private_decrypt(str.length(), (unsigned char*)str.c_str(), (unsigned char*)plaintext, rsa, RSA_PKCS1_PADDING);if (ret < 0){ERR_print_errors_fp(stdout);free(plaintext);RSA_free(rsa);fclose(file);return std::string();}std::string s(plaintext, ret);free(plaintext);RSA_free(rsa);fclose(file);return s;
}

这两段代码的调用也非常容易,如下代码片段则分别实现了对text字符串的加密与解密功能,使用公钥加密,使用私钥解密。

int main(int argc, char* argv[])
{std::string text = "hello lyshark";// 公钥加密std::string public_path = "d://rsa_public_key.pem";std::string encry = Public_RsaEncrypt(text, public_path);// std::cout << "加密后文本: " << encry << std::endl;// 私钥解密std::string private_path = "d://rsa_private_key.pem";std::string decry = Private_RsaDecrypt(encry, private_path);std::cout << "解密后文本: " << decry << std::endl;system("pause");return 0;
}

这段代码输出效果如下图所示;

20.2.2 私钥加密公钥解密

在RSA算法中,私钥加密公钥解密并不是一种常见的使用方式,因为私钥是用于签名而不是加密的。通常的使用方式是,使用公钥加密,私钥解密,这样可以保证数据的机密性,只有拥有私钥的人才能解密数据,但在某些时候我们不得不将这个流程反过来,使用私钥加密并使用公钥解密。

私钥加密的封装代码如下所示,其中Private_RsaEncrypt用于实现私钥加密,该函数同样接受两个参数,分别是待加密字符串以及当前私钥路径,函数的核心部分是RSA_private_encrypt该函数可用于使用私钥对数据进行加密。

// 私钥加密
std::string Private_RsaEncrypt(const std::string& str, const std::string& path)
{RSA* rsa = NULL;FILE* file = NULL;char* ciphertext = NULL;int len = 0;int ret = 0;file = fopen(path.c_str(), "r");if (file == NULL){return std::string();}rsa = PEM_read_RSAPrivateKey(file, NULL, NULL, NULL);if (rsa == NULL){ERR_print_errors_fp(stdout);fclose(file);return std::string();}len = RSA_size(rsa);ciphertext = (char*)malloc(len + 1);if (ciphertext == NULL){RSA_free(rsa);fclose(file);return std::string();}memset(ciphertext, 0, len + 1);ret = RSA_private_encrypt(str.length(), (unsigned char*)str.c_str(), (unsigned char*)ciphertext, rsa, RSA_PKCS1_PADDING);if (ret < 0){ERR_print_errors_fp(stdout);free(ciphertext);RSA_free(rsa);fclose(file);return std::string();}std::string s(ciphertext, ret);free(ciphertext);RSA_free(rsa);fclose(file);return s;
}

公钥解密的实现方法与加密完全一致,代码中Public_RsaDecrypt函数用于实现公钥解密,其核心功能的实现依赖于RSA_public_decrypt这个关键函数。

// 公钥解密
std::string Public_RsaDecrypt(const std::string& str, const std::string& path)
{RSA* rsa = NULL;FILE* file = NULL;char* plaintext = NULL;int len = 0;int ret = 0;file = fopen(path.c_str(), "r");if (file == NULL){return std::string();}rsa = PEM_read_RSA_PUBKEY(file, NULL, NULL, NULL);if (rsa == NULL){ERR_print_errors_fp(stdout);fclose(file);return std::string();}len = RSA_size(rsa);plaintext = (char*)malloc(len + 1);if (plaintext == NULL){RSA_free(rsa);fclose(file);return std::string();}memset(plaintext, 0, len + 1);ret = RSA_public_decrypt(str.length(), (unsigned char*)str.c_str(), (unsigned char*)plaintext, rsa, RSA_PKCS1_PADDING);if (ret < 0){ERR_print_errors_fp(stdout);free(plaintext);RSA_free(rsa);fclose(file);return std::string();}std::string s(plaintext, ret);free(plaintext);RSA_free(rsa);fclose(file);return s;
}

有了上述方法,那么调用代码则变得很容易,如下所示,我们将text字符串使用私钥进行加密,并使用公钥进行解密。

int main(int argc, char* argv[])
{std::string text = "hello lyshark";// 私钥加密std::string private_path = "d://rsa_private_key.pem";std::string encry = Private_RsaEncrypt(text, private_path);// std::cout << "加密后文本: " << encry << std::endl;// 公钥解密std::string public_path = "d://rsa_public_key.pem";std::string decry = Public_RsaDecrypt(encry, public_path);std::cout << "解密后文本:" << decry << std::endl;system("pause");return 0;
}

这段代码输出效果如下图所示;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125142.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我的架构复盘

1、背景 我目前公司研发中心担任软件研发负责人&#xff0c;研发中心分为3组&#xff0c;总共有30多人。研发中心主要开发各类生产辅助工具&#xff0c;比如巡检、安全教育等系统。系统不对外&#xff0c;只在公司内部使用。 就我个人来说&#xff0c;作为研发负责人&#xf…

【C语言_题库】C语言:编写一个程序,输入一组字符串,将字符串中的小写字母转换为大写字母,其它字符不变,并输出。

把键盘输入的一行字符串的小写字母转换成大写字母,其余字符不变,进行输出,直到遇到回车为止。 具体说明 【问题描述】 从键盘输入一行英文字符串,把所有小写字母变成大写字母,其他字母和字符保持不变。 【输入形式】 输入一行字符串,含大小写。 【输出形式】 输出大写字…

考试成绩这样分发

老师们&#xff0c;还在为每次繁琐的成绩查询而头痛&#xff1f;今天我就要给大家带来一个超级实用的教程&#xff0c;让你轻松解决这个问题&#xff01; 我来介绍一下这个神秘的“成绩查询页面”。别以为它很复杂&#xff0c;其实它就是一个简单的网页&#xff0c;上面会有每个…

详解—数据结构《树和二叉树》

目录 一.树概念及结构 1.1树的概念 1.2树的表示 二.二叉树的概念及结构 2.1概念 2.2二叉树的特点 2.3现实中的二叉树 2.4数据结构中的二叉树 2.5 特殊的二叉树 2.6二叉树的存储结构 2.6.1二叉树的性质 2.6.2 顺序结构 2.6.3链式存储 三. 二叉树的链式结构的遍历 …

美术培训服务预约小程序的作用是什么

线下培训教育机构很多&#xff0c;涉及到的行业及种类很多&#xff0c;美术培训就是其中较为重要的一类&#xff0c;尤其是青少年群体&#xff0c;其拓展度很深&#xff0c;而对商家来说&#xff0c;其主要生源在本地同城&#xff0c;因此品牌宣传和渠道发展、学员赋能很重要。…

AI虚拟主播源码系统 搭建专属自己的直播间+送礼物 功能强大 带完整搭建教程

在互联网的不断发展下&#xff0c;直播行业迅速崛起&#xff0c;成为一种新的信息传播和娱乐形式。越来越多的人开始通过直播平台进行交流、互动和分享。因此&#xff0c;开发一款能够提供高质量、稳定直播服务的平台具有重要的现实意义。 随着人工智能技术的不断进步&#xf…

蓝桥杯每日一题2023.10.29

螺旋折线 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 在图中我们可以观察到四个对角线的值均为特殊点&#xff0c;其他的点可以根据这几个 进行偏移量的计算从而进行表示&#xff0c;此题主要是找到规律即可 #include<bits/stdc.h> using namespace std; typedef long…

红米电脑硬盘剪切

Redmi R14 2023版固态硬盘剪切 工具准备操作结尾语 首先要说明&#xff0c;本文所说的操作不一定适合你的电脑&#xff0c;因为电子产品更新换代过快&#xff0c;你的硬盘不一定能剪切&#xff0c;在操作前一定要仔细观察硬盘的型号&#xff0c;是否为同款&#xff0c;我上了图…

测试C#调用Aplayer播放视频(1:加载Aplayer控件)

微信公众号“Dotnet跨平台”的文章《开源精品&#xff0c;使用 C# 开发的 KTV 点歌项目》中使用了迅雷开源APlayer播放引擎。最近在学习有哪些能拿来播放视频的组件或控件&#xff0c;于是准备试试&#xff0c;根据文章中的介绍&#xff0c;在迅雷APlayer播放引擎网站中下载了A…

【23真题】对不起,由于我的择校分析,这所可能会炸!

哈喽大家好&#xff0c;现在这个时间节点&#xff0c;有很多同学开始刷真题了&#xff01;所以23真题系列正式启动&#xff01;小马哥将全面发布23真题及详细解析&#xff01; 注意太原科技大学&#xff0c;自我发了择校分析以后&#xff08;苍天为证&#xff0c;我真的没有任…

C++面试——多线程详解

C11提供了语言层面上的多线程&#xff0c;包含在头文件<thread>中。它解决了跨平台的问题&#xff0c;提供了管理线程、保护共享数据、线程间同步操作、原子操作等类。C11 新标准中引入了5个头文件来支持多线程编程&#xff0c;如下图所示&#xff1a; 多进程与多线程 多…

计数排序(秒懂版)

public class CountingSort {int[] sort() {int N 10000;int M 100;//假设A中最大值为100int A[] new int[N];//1~k,原数组int B[] new int[N];//1~k,Stores incompletely sorted numbersint C[] new int[M 1];//0~n,辅助排序数组for (int i 0; i < M; i) {C[i] 0;}…

【Linux】多路IO复用技术①——select详解如何使用select模型在本地主机实现简易的一对多服务器(附图解与代码实现)

这一篇的篇幅可能有点长&#xff0c;但真心希望大家能够静下心来看完&#xff0c;相信一定会有不小的收获。那么话不多说&#xff0c;我们这就开始啦&#xff01;&#xff01;&#xff01; 目录 一对一服务器中的BUG 如何实现简易的一对多服务器 实现简易一对多服务器的大体…

大数据-Storm流式框架(六)---Kafka介绍

Kafka简介 Kafka是一个分布式的消息队列系统(Message Queue)。 官网&#xff1a;Apache Kafka 消息和批次 kafka的数据单元称为消息。消息可以看成是数据库表的一行或一条记录。 消息由字节数组组成&#xff0c;kafka中消息没有特别的格式或含义。 消息有可选的键&#x…

Kubernetes Taint(污点) 和 Toleration(容忍)

Author&#xff1a;rab 目录 前言一、Taint&#xff08;污点&#xff09;1.1 概述1.2 查看节点 Taint1.3 标记节点 Taint1.4 删除节点 Taint 二、Toleration&#xff08;容忍&#xff09; 前言 Kubernetes 中的污点&#xff08;Taint&#xff09;和容忍&#xff08;Toleration…

3D模拟场景开发引擎

在3D工程模拟开发中&#xff0c;有一些专门的引擎和工具可供选择&#xff0c;以帮助您创建逼真的三维模拟和模型。以下是一些用于3D工程模拟的开发引擎和工具&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流…

SCADA在污水和供水系统解决方案

1. 引言 随着城市化的不断发展&#xff0c;污水和供水系统的管理变得越来越重要。为了提高运营效率和监控系统状态&#xff0c;许多污水处理厂开始使用SCADA系统。 SCADA系统具有实时数据采集、监控和控制功能&#xff0c;可以帮助污水处理厂运营人员实时了解系统的运行情况&…

Python 学习1 基础

文章目录 基础字符串字面量常用的值类型注释变量print语句数据类型数据类型转换标识符运算符 字符串拓展小结 2023.10.28 周六 最近打算学一下Python&#xff0c;毕竟确实简单方便&#xff0c;而且那个编程语言排名还是在第一。不过不打算靠它吃饭&#xff0c;深不深入暂且不说…

linux-vsftp虚拟多用户

目录 1.安装vsftp 2.安装DB工具&#xff0c;能转化普通文件为vsftpd识别数据库加密文件 3.创建登录虚拟用户的名单 4.加密文件 6.需要修改vsftpd的配置文件 7.修改vsftp的配置文件&#xff0c;加载支持虚拟用户模式 8.针对不同用户开启不同权限 9.重启服务 10.测试 安…

记录微调chatglm3

用于记录chatglm3的过程&#xff0c;防止忘记 需要注意的 可以使用xtuner -h查看有哪些功能可以使用。 [2023-10-31 11:40:18,643] [INFO] [real_accelerator.py:158:get_accelerator] Setting ds_accelerator to cuda (auto detect) 10/31 11:40:22 - mmengine - INFO - Ar…