Training-Time-Friendly Network for Real-Time Object Detection 论文学习

1. 解决了什么问题?

目前的目标检测器很少能做到快速训练、快速推理,并同时保持准确率。直觉上,推理越快的检测器应该训练也很快,但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类:推理时间久的的训练时间久的。
推理时间久的检测器一般依赖于复杂的后处理逻辑或沉重的检测 head。尽管这些设计能提升准确率和收敛速度,但是推理速度很慢,不适合实时应用。

为了降低推理速度,人们尝试去简化检测 head 与后处理,同时能维持准确率。CenterNet 的推理速度快,但是需要很长的训练时间,这是因为简化后的网络很难训练,过度依赖于数据增强和长训练周期。比如,CenterNet 在 MS COCO 数据集上需要训练 140 140 140个 epochs,而第一类方法只要训练 12 12 12epochs。

研究发现,如果 batch size 越大,可采取较大的学习率,二者之间服从某种线性关系。作者发现,从标注框编码更多的训练样本,与增大 batch size 的作用相似。与特征提取相比,编码特征、计算损失的时间微乎其微。这样我们就可以很低的代价来加快收敛。CenterNet 在回归目标的尺寸时,只关注目标的中心点,无法利用目标中心点附近的信息,造成收敛速度很慢。

2. 提出了什么方法?

为了平衡速度和准确率,作者提出了 TTFNet,它具有 light-head、单阶段和 anchor-free 的特点,推理速度很快。为了降低训练时间,作者发现从标注框中编码更多的训练样本,与增大 batch size 作用相似,从而可以增大学习率、加快训练过程。最后,在进行定位和回归时,提出利用高斯核来编码训练样本的方法。于是网络可以更好地利用标注框,产生更多的监督信号,实现快速收敛。通过高斯核构建出目标中心的附近区域,从该区域内提取训练样本。将高斯概率作为回归样本的权重使用,这样能更加关注于中心附近的样本。该方法能减少模糊的、低质量样本,无需 FPN 结构。此外,也无需预测偏移量来修正预测结果。

Motivation

编码更多的训练样本与增大 batch size 是相似的,都可以提供更多的监督信号。这里的“训练样本”是指标注框内编码的特征。在随机梯度下降(SGD)中,权重更新表示为:

w t + 1 = w t − η 1 n ∑ x ∈ B Δ l ( x , w t ) w_{t+1}=w_t - \eta\frac{1}{n}\sum_{x\in B}\Delta l(x,w_t) wt+1=wtηn1xBΔl(x,wt)

w w w是网络权重, B B B是训练集里的 mini-batch, n = ∣ B ∣ n=|B| n=B是 mini-batch size, η \eta η是学习率, l ( x , w ) l(x,w) l(x,w)是图像 x x x的损失计算。
对于目标检测任务,图像 x x x包含多个标注边框,这些边框会被编码为训练样本 s ∈ S x s\in S_x sSx m x = ∣ S x ∣ m_x=|S_x| mx=Sx是图像 x x x中所有边框产生的样本个数。因此上式可写为:

w t + 1 = w t − η 1 n ∑ x ∈ B 1 m x ∑ s ∈ S x Δ l ( s , w t ) w_{t+1}=w_t - \eta \frac{1}{n}\sum_{x\in B} \frac{1}{m_x} \sum_{s\in S_x} \Delta l(s, w_t) wt+1=wtηn1xBmx1sSxΔl(s,wt)

为了更简洁,我们假设 mini-batch B B B里的每张图像 x x x m x m_x mx都相等。对于每个训练样本 s s s,上式写为:

w t + 1 = w t − η 1 n m ∑ s ∈ B Δ l ( s , w t ) w_{t+1}=w_t - \eta \frac{1}{nm}\sum_{s\in B}\Delta l(s,w_t) wt+1=wtηnm1sBΔl(s,wt)
根据线性缩放规则,如果 batch size 乘以 k k k,则学习率也要乘以 k k k,除非网络变动很大,或使用了非常大的 mini-batch。只有当我们能假设 Δ l ( x , w t ) ≈ Δ l ( x , w t + j ) , j < k \Delta l(x,w_t)\approx \Delta l(x, w_{t+j}),j<k Δl(x,wt)Δl(x,wt+j),j<k时,用小 mini-batch B j B_j Bj k k k次、学习率为 η \eta η,与用较大的 mini-batch ∪ j ∈ [ 0 , k ) B j \cup_{j\in [0,k)}B_j j[0,k)Bj、学习率为 k η k\eta kη 1 1 1次是等价的。这里,我们只关注训练样本 s s s,mini-batch size ∣ B ∣ = n m |B|=nm B=nm。作者提出了一个相似的结论:每个 mini-batch 内的训练样本个数乘以 k k k,则学习率乘以 l l l 1 ≤ l ≤ k 1\leq l\leq k 1lk
CenterNet 的推理速度很快,但训练时间很长。它在训练过程中使用了复杂的数据增强方法。尽管这些增强能提升训练准确率,但是收敛很慢。为了排除它们对收敛速度的影响,实验时不使用数据增强,而且加大学习率。如下图,较大的学习率能加快收敛,但是准确率下降,会造成过拟合。这是因为 CenterNet 在训练时只会在目标中心位置编码一个回归样本,这使得 CenterNet 必须依赖于数据增强和长训练周期。
在这里插入图片描述

Approach

Background

CenterNet 将目标检测任务分为两个部分:中心定位和尺寸回归。在定位任务,它采取高斯核输出热力图,网络在目标中心附近产生高激活值。在回归任务,将目标中心点的像素定义为训练样本,直接预测目标的宽度和高度。此外,它会预测目标因输出步长而造成的偏移。网络在推理时,目标中心点附近的激活值较高,NMS 可被替换为其它操作。为了去除 NMS,作者采取了与中心定位相似的策略,在高斯核中加入了边框的宽高比。CenterNet 没有考虑到这一点,不是最优的

对于尺寸回归,作者将高斯区域内所有的像素点都当作训练样本。此外,使用目标大小和高斯概率计算出样本的权重,更好地利用信息。该方法无需预测偏移量来修正下采样造成的误差,因此更加简洁、高效。下图中,主干网络提取特征,然后上采样到原图 1 / 4 1/4 1/4分辨率。然后这些特征用于定位和回归任务。定位时,网络在目标中心输出高激活值。回归时,边框的高斯区域内的所有样本都能直接预测它到四条边的距离

在这里插入图片描述

Gaussian Kernels for Training

给定一张图片,网络分别预测特征 H ^ ∈ R N × C × H r × W r \hat{H}\in \mathcal{R}^{N\times C\times \frac{H}{r}\times \frac{W}{r}} H^RN×C×rH×rW S ^ ∈ R N × 4 × H r × W r \hat{S}\in \mathcal{R}^{N\times 4\times \frac{H}{r}\times \frac{W}{r}} S^RN×4×rH×rW。前者表示目标中心点在哪,后者获取目标尺寸的信息。 N , C , H , W , r N,C,H,W,r N,C,H,W,r分别是 batch size、类别数、输入图像的高度和宽度、输出步长。实验中, C = 80 , r = 4 C=80,r=4 C=80,r=4。在定位和回归任务,都使用了高斯核,使用标量 α , β \alpha,\beta α,β来控制高斯核大小。

Object Localization

假设第 m m m个标注框属于第 c m c_m cm个类别,首先将它线性映射到特征图尺度。然后 2D 高斯核 K m ( x , y ) = exp ⁡ ( − ( x − x 0 ) 2 2 σ x 2 − ( y − y 0 ) 2 2 σ y 2 ) \mathbf{K}_m(x,y)=\exp({-\frac{(x-x_0)^2}{2\sigma_x^2}}-\frac{(y-y_0)^2}{2\sigma_y^2}) Km(x,y)=exp(2σx2(xx0)22σy2(yy0)2)用于输出 H m ∈ R 1 × H r × W r H_m\in \mathcal{R}^{1\times \frac{H}{r}\times \frac{W}{r}} HmR1×rH×rW,其中 σ x = α ⋅ w 6 , σ y = α ⋅ h 6 \sigma_x=\frac{\alpha\cdot w}{6},\sigma_y=\frac{\alpha\cdot h}{6} σx=6αw,σy=6αh。最后,对 H m H_m Hm使用 element-wise max 操作,更新 H H H的第 c m c_m cm个通道。 H m H_m Hm由参数 α \alpha α、中心位置 ( x 0 , y 0 ) m (x_0,y_0)_m (x0,y0)m和边框大小 ( h , w ) m (h,w)_m (h,w)m决定。使用 ( ⌊ x r ⌋ , ⌊ y r ⌋ ) (\lfloor\frac{x}{r}\rfloor, \lfloor\frac{y}{r}\rfloor) (⌊rx,ry⌋)使中心点落在某像素点上。网络中,设定 α = 0.54 \alpha=0.54 α=0.54

将高斯分布的峰值点(边框中心像素点)当作正样本,其它像素点当作负样本。

给定预测 H ^ \hat{H} H^和定位目标 H H H
L l o c = − 1 M { ( 1 − H ^ i j c ) α f log ⁡ ( H ^ i j c ) if H i j c = 1 ( 1 − H i j c ) β f H ^ i j c α f log ⁡ ( 1 − H ^ i j c ) , otherwise L_{loc} = -\frac{1}{M}\left\{ \begin{array}{ll} (1-\hat{H}_{ijc})^{\alpha_f}\log(\hat{H}_{ijc})\quad\quad\quad\quad\quad\quad\quad\text{if}\quad H_{ijc}=1 \\ (1-H_{ijc})^{\beta_f}\hat{H}^{\alpha_f}_{ijc}\log (1-\hat{H}_{ijc}),\quad\quad\quad \text{otherwise} \end{array} \right. Lloc=M1{(1H^ijc)αflog(H^ijc)ifHijc=1(1Hijc)βfH^ijcαflog(1H^ijc),otherwise

其中 α f , β f \alpha_f,\beta_f αf,βf是 focal loss 的超参。 M M M表示标注框的个数。 α f = 0.2 , β f = 4 \alpha_f=0.2,\beta_f=4 αf=0.2,βf=4

Size Regression

给定特征图尺度上的第 m m m个标注框,用高斯核输出 S m ∈ R 1 × H r × W r S_m\in \mathcal{R}^{1\times \frac{H}{r}\times \frac{W}{r}} SmR1×rH×rW β \beta β控制高斯核大小。 S m S_m Sm中的非零区域叫做高斯区域 A m A_m Am A m A_m Am总是存在于第 m m m个边框内,因此被叫做 sub-area。

Sub-area 内每个像素都是一个回归样本。给定 A m A_m Am内的像素 ( i , j ) (i,j) (i,j)及输出步长 r r r,回归目标定义为 ( i r , j r ) (ir,jr) (ir,jr)到第 m m m边框四条边的距离,记做一个四维向量 ( w l , h t , w r , h b ) i j m (w_l,h_t,w_r,h_b)^m_{ij} (wl,ht,wr,hb)ijm ( i , j ) (i,j) (i,j)位置的预测框表示为:

x ^ 1 = i r − w ^ l s , y ^ 1 = j r − h ^ t s \hat{x}_1=ir-\hat{w}_ls, \quad\quad \hat{y}_1=jr-\hat{h}_ts x^1=irw^ls,y^1=jrh^ts
x ^ 2 = i r + w ^ r s , y ^ 2 = j r + h ^ b s \hat{x}_2=ir+\hat{w}_rs, \quad\quad \hat{y}_2=jr+\hat{h}_bs x^2=ir+w^rs,y^2=jr+h^bs

s s s是个固定标量,扩大预测结果,从而降低优化难度。实验中 s = 16 s=16 s=16。预测框 ( x ^ 1 , y ^ 1 , x ^ 2 , y ^ 2 ) (\hat{x}_1,\hat{y}_1,\hat{x}_2,\hat{y}_2) (x^1,y^1,x^2,y^2)位于图像尺度,而非特征图尺度。

不存在于任何 sub-area 内的像素,在训练时会被忽略。如果一个像素同时存在于多个 sub-area(模糊样本),则训练 target 设为面积较小的目标。

给定预测结果 S ^ \hat{S} S^和回归目标 S S S,从 S S S中汇集训练目标 S ′ ∈ R N r e g × 4 S'\in \mathcal{R}^{N_{reg}\times 4} SRNreg×4,及其对应的预测结果 S ′ ^ ∈ R N r e g × 4 \hat{S'}\in \mathcal{R}^{N_{reg}\times 4} S^RNreg×4 N r e g N_{reg} Nreg表示回归样本数。如上式所做的,对于这些样本,解码出预测边框,及其对应的标注框。使用 GIoU 计算损失:

L r e g = 1 N r e g ∑ ( i , j ) ∈ A m GIoU ( B ^ i j , B m ) × W i j L_{reg}=\frac{1}{N_{reg}}\sum_{(i,j)\in A_m} \text{GIoU}(\hat{B}_{ij},B_m)\times W_{ij} Lreg=Nreg1(i,j)AmGIoU(B^ij,Bm)×Wij
B ^ i j \hat{B}_{ij} B^ij表示解码后的边框 ( x ^ 1 , y ^ 1 , x ^ 2 , y ^ 2 ) i j (\hat{x}_1,\hat{y}_1,\hat{x}_2,\hat{y}_2)_{ij} (x^1,y^1,x^2,y^2)ij B m = ( x 1 , y 1 , x 2 , y 2 ) m B_m=({x}_1,{y}_1,{x}_2,{y}_2)_m Bm=(x1,y1,x2,y2)m表示图像尺度的第 m m m个标注框。 W i j W_{ij} Wij是样本权重,平衡各样本的损失。

因为目标尺度都不一样,大目标可能产生几千个样本,而小目标只能产生很少。损失归一化后,小目标的损失几乎都没了,这不利于检测小目标。因此,样本权重 W i j W_{ij} Wij发挥着重要作用,平衡损失。假定 ( i , j ) (i,j) (i,j)位于第 m m m个标注框的子区域 A m A_m Am内,

W i j = { log ⁡ ( a m ) × G m ( i , j ) ∑ ( x , y ) ∈ A m G m ( x , y ) if ( i , j ) ∈ A m 0 if ( i , j ) ∉ A m W_{ij} = \left\{ \begin{array}{ll} \log(a_m)\times \frac{G_m(i,j)}{\sum_{(x,y)\in A_m} G_m(x,y)} \quad\quad\quad\quad\text{if}\quad (i,j)\in A_m \\ 0\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\text{if}\quad (i,j)\notin A_m \end{array} \right. Wij={log(am)×(x,y)AmGm(x,y)Gm(i,j)if(i,j)Am0if(i,j)/Am

其中 G m ( i , j ) G_m(i,j) Gm(i,j) ( i , j ) (i,j) (i,j)位置的高斯概率。 a m a_m am是第 m m m个边框的面积。该机制能更好地利用大目标的标注信息,保留小目标的信息。它也能突出目标中心附近的样本,减少模糊和低质量样本。

Total Loss

总损失 L L L包括了定位损失 L l o s L_{los} Llos和回归损失 L r e g L_{reg} Lreg,用两个标量加权。 L = w l o g L l o c + w r e g L r e g L=w_{log}L_{loc}+w_{reg}L_{reg} L=wlogLloc+wregLreg,本文设定 w l o c = 1.0 , w r e g = 5.0 w_{loc}=1.0, w_{reg}=5.0 wloc=1.0,wreg=5.0

Overall Design

TTFNet 的结构如上图所示。主干使用 ResNet 和 DarkNet。主干提取特征后,上采样到原图的 1 / 4 1/4 1/4分辨率,用 Modulated Deform Conv 和上采样层实现,后面跟着 BN 层和 ReLU 层。

然后,上采样特征分别输入进两个 heads。定位 head 对目标中心附近的位置输出高激活值,而回归 head 直接预测这些位置到边框四条边的距离。因为目标中心对应特征图的局部极大值,用 2D 最大池化来抑制非极大值。然后用局部极大值来汇总回归结果。最后得到检测结果。

该方法充分利用了大中目标的标注信息,而小目标的提升有限。为了提升短训练周期中小目标的表现,通过短路连接来引入高分辨率、低层级特征。短路连接引入了主干网络第2、3、4阶段的特征,每个连接用 3 × 3 3\times 3 3×3卷积实现。短路连接的第2、3、4阶段的层数分别设为3、2、1,每层后跟着一个 ReLU,除了最后一个。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12425.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

银河麒麟安装mysql数据库(mariadb)-银河麒麟安装JDK-银河麒麟安装nginx(附安装包)

银河麒麟离线全套安装教程&#xff08;手把手教程&#xff09; 1.银河麒麟服务器系统安装mysql数据库&#xff08;mariadb&#xff09; 2.银河麒麟桌面系统安装mysql数据库&#xff08;mariadb&#xff09; 3.银河麒麟服务器系统安装JDK 4.银河麒麟桌面系统安装JDK 5.银河麒麟…

青大数据结构【2021】

一、单选&#xff08;17&#xff01;&#xff09; 根据中序遍历得到降序序列可以知道&#xff0c;每个结点的左子树的结点的值比该结点的值小&#xff0c;因为没有重复的关键字&#xff0c;所以拥有最大值的结点没有左子树。 二、简答 三、分析计算 四、算法分析 3.迪杰斯特拉…

windows安装Elasticsearch8.9.0

官网解压安装好路径&#xff08;非中文&#xff0c;无空格&#xff09; 可参考 言之有李LAX csdn http://t.csdn.cn/S2oju本人使用jdk17 修改配置elasticsearch.yml xpack.security.enabled: false xpack.security.http.ssl:enabled: false直接点击bin\elasticsearch.bat…

Unity 工具之 NuGetForUnity 包管理器,方便在 Unity 中的进行包管理的简单使用

Unity 工具之 NuGetForUnity 包管理器&#xff0c;方便在 Unity 中的进行包管理的简单使用 目录 Unity 工具之 NuGetForUnity 包管理器&#xff0c;方便在 Unity 中的进行包管理的简单使用 一、简单介绍 二、NuGetForUnity 的下载导入 Unity 三、NuGetForUnity 在 Unity 的…

LeetCode 75 第十二题(11)盛最多水的容器

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 配合着示例给出的图片我们可以得知找出盛水最多的容器是什么意思,给一个数组,找出数组中两个元素能围成的最大的矩阵面积是多少. 比较直观的想法是套两层for循环暴力解出来,但是这题是中等难度题,一般中等题是没法用暴力得…

pinia在vue3中的使用

总结&#xff1a; 在store文件夹中建一个pinia的文件userStore.js 1.要想使用pinia必须先引入defineStore 这里我们使用es6的模块化语法导出的 import { defineStore } from pinia 2.然后使用export const useUserStore defineStore(user,{}) defineStore 方法有两个参数&…

论文分享:PowerTCP: Pushing the Performance Limits of Datacenter Networks

1 原论文的题目&#xff08;中英文&#xff09;、题目中包含了哪些关键词&#xff1f;这些关键词的相关知识分别是什么&#xff1f; 题目&#xff1a;PowerTCP: Pushing the Performance Limits of Datacenter Networks PowerTCP&#xff1a;逼近数据中心的网络性能极限 2 论…

vue+Element项目中v-for循环+表单验证

如果在Form 表单里有通过v-for动态生成&#xff0c;如何设置验证呢&#xff1f; <el-form ref"ruleFormRef" :model"ruleForm" status-icon :rules"rules" label-width"120px"class"demo-ruleForm" hide-required-aster…

在EF Core中为数据表按列加密存储

假设有User表 public class User : Entity<int> {public int Id { get; set; }public string UserName { get; set; }public string Name { get; set; }public string IdentificationNumber { get; set; } }其中有身份证号码IdentificationNumber列&#xff0c;需要加密…

虚拟机(VMware)安装Linux(Ubuntu)安装教程

清华大学开源网站镜像站网址&#xff1a;清华大学开源软件镜像站 | Tsinghua Open Source Mirror 进入之后在搜索框中搜索“ubuntu” 直接点击箭头所指的蓝色字体“ubuntu-20.04.1-desktop-amd64.iso”即可下载

[Ubuntu 22.04] containerd配置HTTP方式拉取私仓Harbor

文章目录 1. 基础环境配置2. Docker安装3. 部署Harbor&#xff0c;HTTP访问4. 部署ContainerD5. 修改docker配置文件&#xff0c;向harbor中推入镜像6. 配置containerd6.1. 拉取镜像验证6.2. 推送镜像验证 1. 基础环境配置 [Ubuntu 22.04] 安装K8S基础环境准备脚本 2. Docker安…

听说 Spring Bean 的创建还有一条捷径?

文章目录 1. resolveBeforeInstantiation1.1 applyBeanPostProcessorsBeforeInstantiation1.2 applyBeanPostProcessorsAfterInitialization1.3 案例 2. 源码实践2.1 切面 Bean2.2 普通 Bean 在 Spring Bean 的创建方法中&#xff0c;有如下一段代码&#xff1a; AbstractAutow…

详解rocketMq通信模块升级构想

本文从开发者的角度深入解析了基于netty的通信模块, 并通过简易扩展实现微服务化通信工具雏形, 适合于想要了解netty通信框架的使用案例, 想了解中间件通信模块设计, 以及微服务通信底层架构的同学。希望此文能给大家带来通信模块架构灵感。 概述 网络通信是很常见的需求&#…

什么是自动化测试?

什么是自动化测&#xff1f; 做测试好几年了&#xff0c;真正学习和实践自动化测试一年&#xff0c;自我感觉这一个年中收获许多。一直想动笔写一篇文章分享自动化测试实践中的一些经验。终于决定花点时间来做这件事儿。 首先理清自动化测试的概念&#xff0c;广义上来讲&#…

k8s安装prometheus

安装 在目标集群上&#xff0c;执行如下命令&#xff1a; kubectl apply -f https://gitee.com/i512team/dhorse/raw/main/conf/kubernetes-prometheus.yml使用 1.在浏览器访问地址&#xff1a;http://master_ip:30000&#xff0c;如下图所示&#xff1a; 2.查看k8s自带的…

yolov5 onnx模型 转为 rknn模型

1、转换为rknn模型环境搭建 onnx模型需要转换为rknn模型才能在rv1126开发板上运行&#xff0c;所以需要先搭建转换环境 模型转换工具 模型转换相关文件下载&#xff1a; 网盘下载链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;teuc 将其移动到虚拟机中&#xf…

前端开发Vue3.0 标签setup语法『UI组件库』之『模态框』【业务提升必备】

封装模态框需要定义的参数 title //弹窗标题 show // 是否显示弹窗 width // 弹窗宽度 height // 弹窗高度 borderRadius // 弹窗圆角 headerColor // 弹窗顶部颜色 contentText // 内容文本 contentTextCorder //内容文本颜色 position // 标题的位置 …

自定义 View(六) 自定义评分星星

先看看效果图 1.自定义 View 的基本流程 创建 View Class创建 attr 属性文件&#xff0c;确定属性View Class 绑定 attr 属性onMeasure 测量onDraw 绘制onTouchEvent ( 用户交互需要处理 ) 1.1 创建 View Class package com.example.view_day05_ratingbar;import android.…

GAMES104里渲染等一些剩下的问题

渲染的一些剩下的问题 1. 如何理解渲染中的AO(环境光遮蔽) 环境光遮蔽 我们先从一个简单的效果开始—环境光遮蔽(Ambient Occlusion,以下简称AO)。大家可以看到&#xff0c;下图中的场景没有任何渲染效果&#xff0c;也没有任何着色效果&#xff0c;但场景呈现出了非常清晰的…

面试-杨辉三角python递归实现,二进制转换

杨辉三角 def yang_hui(x,y):xint(x)yint(y)assert x>y,列数不应该大于行数# x 表示行&#xff0c;y表示列if y1 or yx:return 1else:return yang_hui(x-1,y-1)yang_hui(x-1,y)xinput(输入第几行) yinput(输入第几列) resultyang_hui(int(x),int(y)) print(result) #inclu…