高阶数据结构图下篇

目录:

  • 图的基本概念二
    • 深度优先遍历(DFS)
      • 广度优先遍历(BFS)
  • kruskal(克鲁斯卡尔算法)
    • Prim(普里姆算法)
      • Dijkstra(迪杰斯特拉算法)
        • Bellman-ford(贝尔曼-福特算法)
  • flyod-warshall(佛洛伊德算法)

图的基本概念二

完全图:任意两个顶点之间有且仅有一条边,则称此图为无向完全图;任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图。

邻接顶点:在无向图G中,若(U,V)是E(G)中的一条边;则称U和V互为邻接顶点,有向图中,则称顶点U邻接到V。

顶点的度:顶点的度是指与它相关联的边的条数,记作deg(V)。

路径:在图G中,若从顶点vi出发有一组边使其可达到顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。

路径长度:对于不带权的图,一条路径长度是指该路径上的的边的条数;对于带权的图,一条路径的长度是指该路径上各个边权值的总和

简单路径和回路:若路径上各个顶点均不重复,则称这样的路径为简单路径。若路径上第一个顶点和最后一个顶点重合,则称这样的路径为回路或环。

子图:顶点和边都是原图的一部分。

连通图:在无向图中,如果图中任意一对顶点是连通的,则称为连通图

强连通图:在有向图中,若在每一个顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到vi的路径,则称此图为强连通图。

生成树:一个连通图的最小连通子图称作该树的生成树,有n个顶点的连通图的生成树有n个顶点和n-1条边。

深度优先遍历(DFS):深度优先遍历借助栈结构,将可执行的节点元素逐个入栈,直到本条路径再也找不到可执行的节点。

广度优先遍历(BFS):广度优先遍历,又叫宽度优先搜索或横向优先搜索,是从根结点开始沿着树的宽度搜索遍历,将离根节点最近的节点先遍历出来,在继续深挖下去。

最小生成树:构成生成树这些边加起来权值是最小的,最小的成本让这个n个顶点连通。

深度优先遍历(DFS)

深度优先遍历借助栈结构,将可执行的节点元素逐个入栈,直到本条路径再也找不到可执行的节点。
代码如下:
在这里插入图片描述

		//递归void _DFS(size_t srci, vector<bool>& visited){cout << srci << ":" << _vertexs[srci] << endl;visited[srci] = true;//表示这个顶点已经访问过了// 找一个srci相邻的没有访问过的点,去往深度遍历for (size_t i = 0; i < _vertexs.size(); ++i){if (_matrix[srci][i] != MAX_W && visited[i] == false)//表示这个顶点相连且没有访问过{_DFS(i, visited);}}}void DFS(const V& src){size_t srci = GetVertexIndex(src);vector<bool> visited(_vertexs.size(), false);_DFS(srci, visited);}

广度优先遍历(BFS)

广度优先遍历,又叫宽度优先搜索或横向优先搜索,是从根结点开始沿着树的宽度搜索遍历,将离根节点最近的节点先遍历出来,在继续深挖下去。
在这里插入图片描述

代码如下:

void BFS(const V& src){size_t srci = GetVertexIndex(src);// 队列和标记数组queue<int> q;vector<bool> visited(_vertexs.size(), false);q.push(srci);visited[srci] = true;int levelSize = 1;size_t n = _vertexs.size(); while (!q.empty()){// 一层一层出for (int i = 0; i < levelSize; ++i){int front = q.front();//出队头数据q.pop();cout << front << ":" << _vertexs[front] << " ";// 把front顶点的邻接顶点入队列for (size_t i = 0; i < n; ++i){if (_matrix[front][i] != MAX_W)//不是MAX_W就是相连的顶点{if (visited[i] == false){q.push(i);//入队列visited[i] = true;//表示这个顶点访问过了}}}}cout << endl;levelSize = q.size();}cout << endl;}

kruskal(克鲁斯卡尔算法)

Kruskal算法是一种贪心算法,我们将图中的每个edge按照权值大小进行排序,每次从边集中取出权值最小且两个顶点都不在同一个集合的边加入生成树中!注意:如果这两个顶点都在同一集合内,说明已经通过其他边相连,因此如果将这个边添加到生成树中,那么就会形成环!这样反复做,直到所有的节点都连接成功。如何判断添加这条边会不会形成环,我们可以用到并查集。
特点:
1.只能使用图中权值最小的边来构成最小生成树
2.只能使用恰好n-1条边来连接图中的n个顶点
3.选用的n-1条边不能构成回路

代码如下:

		W Kruskal(Self& minTree){size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; ++i){minTree._matrix[i].resize(n, MAX_W);}priority_queue<Edge, vector<Edge>, greater<Edge>> minque;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (i < j && _matrix[i][j] != MAX_W){minque.push(Edge(i, j, _matrix[i][j]));}}}// 选出n-1条边int size = 0;W totalW = W();UnionFindSet ufs(n);while (!minque.empty()){Edge min = minque.top();minque.pop();if (!ufs.InSet(min._srci, min._dsti)){cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti);++size;totalW += min._w;}else{cout << "构成环:";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}}if (size == n - 1){return totalW;}else{return W();}}

在这里插入图片描述

Prim(普里姆算法)

Prim算法是另一种贪心算法,和Kuskral算法的贪心策略不同,Kuskral算法主要对边进行操作,而Prim算法则是对节点进行操作,每次遍历添加一个点,这时候我们就不需要使用并查集了。

代码如下:

W Prim(Self& minTree, const W& src){size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; ++i){minTree._matrix[i].resize(n, MAX_W);}vector<bool> X(n, false);vector<bool> Y(n, true);X[srci] = true;Y[srci] = false;// 从X->Y集合中连接的边里面选出最小的边priority_queue<Edge, vector<Edge>, greater<Edge>> minq;// 先把srci连接的边添加到队列中for (size_t i = 0; i < n; ++i){if (_matrix[srci][i] != MAX_W){minq.push(Edge(srci, i, _matrix[srci][i]));}}cout << "Prim开始选边" << endl;size_t size = 0;W totalW = W();while (!minq.empty()){Edge min = minq.top();minq.pop();// 最小边的目标点也在X集合,则构成环if (X[min._dsti]){//cout << "构成环:";//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}else{minTree._AddEdge(min._srci, min._dsti, min._w);//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;X[min._dsti]= true;Y[min._dsti] = false;++size;totalW += min._w;if (size == n - 1)break;for (size_t i = 0; i < n; ++i){if (_matrix[min._dsti][i] != MAX_W && Y[i]){minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));}}}	}if (size == n - 1){return totalW;}else{return W();}}

总结这两种算法:
构成最小生成树的方法:Kruskal算法和Prim算法。这两个算法都采用了逐步求解的贪心策略。Kruksal算法是对边进行操作,先取出边,然后判断边的两个节点,这样的话,如果一个图结构非常的稠密,那么Kruksal算法就比较慢了,而Prim算法只是对节点进行遍历,并使用visited进行标记,因此会相对于Kruksal算法,在稠密图方面好很多,因此Kruksal算法常用于稀疏图,而Prim算法常用于稠密图!

Dijkstra(迪杰斯特拉算法)

迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题,同时算法要求图中所以边的权重非负。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

代码如下:

void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath){size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();dist.resize(n, MAX_W);pPath.resize(n, -1);dist[srci] = 0;pPath[srci] = srci;// 已经确定最短路径的顶点集合vector<bool> S(n, false);for (size_t j = 0; j < n; ++j){// 选最短路径顶点且不在S更新其他路径int u = 0;W min = MAX_W;for (size_t i = 0; i < n; ++i){if (S[i] == false && dist[i] < min){u = i;min = dist[i];}}S[u] = true;// 松弛更新u连接顶点v  srci->u + u->v <  srci->v  更新for (size_t v = 0; v < n; ++v){if (S[v] == false && _matrix[u][v] != MAX_W&& dist[u] + _matrix[u][v] < dist[v]){dist[v] = dist[u] + _matrix[u][v];pPath[v] = u;}}}}
Bellman-ford(贝尔曼-福特算法)

美国应用数学家Richard Bellman (理查德.贝尔曼)于1958 年发表了该算法。此外Lester Ford在1956年也发表了该算法。因此这个算法叫做Bellman-Ford算法。其实EdwardF. Moore在1957年也发表了同样的算法,所以这个算法也称为Bellman-Ford-Moore算法。Bellman-ford 算法比dijkstra算法更具普遍性,因为它对边没有要求,可以处理负权边与负权回路的问题。缺点是时间复杂度过高,高达O(VE), V为顶点数,E为边数。

代码如下:

bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath){size_t n = _vertexs.size();size_t srci = GetVertexIndex(src);// vector<W> dist,记录srci-其他顶点最短路径权值数组dist.resize(n, MAX_W);// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组pPath.resize(n, -1);// 先更新srci->srci为缺省值dist[srci] = W();//cout << "更新边:i->j" << endl;// 总体最多更新n轮for (size_t k = 0; k < n; ++k){// i->j 更新松弛bool update = false;cout << "更新第:" << k << "轮" << endl;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){// srci -> i + i ->jif (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j]){update = true;cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;dist[j] = dist[i] + _matrix[i][j];pPath[j] = i;}}}// 如果这个轮次中没有更新出更短路径,那么后续轮次就不需要再走了if (update == false){break;}}// 还能更新就是带负权回路for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){// srci -> i + i ->jif (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j]){return false;}}}return true;}

flyod-warshall(佛洛伊德算法)

Floyd-Warshall算法是有Floyd于1962年提出,其可以计算有向图中任意两点之间的最短路径,此算法利用动态规划的思想将计算的时间复杂度降低为 。其核心思想是,最短路路径的本质就是比较在两个顶点之间中转点,比较经过与不经过中转点的距离哪个更短。类似Bellman-Ford算法,我们将此操作也称为松弛。

代码如下:

	void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath){size_t n = _vertexs.size();vvDist.resize(n);vvpPath.resize(n);// 初始化权值和路径矩阵for (size_t i = 0; i < n; ++i){vvDist[i].resize(n, MAX_W);vvpPath[i].resize(n, -1);}// 直接相连的边更新一下for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (_matrix[i][j] != MAX_W){vvDist[i][j] = _matrix[i][j];vvpPath[i][j] = i;}if (i == j){vvDist[i][j] = W();}}}// abcdef  a {} f ||  b {} c// 最短路径的更新i-> {其他顶点} ->jfor (size_t k = 0; k < n; ++k){for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){// k 作为的中间点尝试去更新i->j的路径if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W&& vvDist[i][k] + vvDist[k][j] < vvDist[i][j]){vvDist[i][j] = vvDist[i][k] + vvDist[k][j];// 找跟j相连的上一个邻接顶点// 如果k->j 直接相连,上一个点就k,vvpPath[k][j]存就是k// 如果k->j 没有直接相连,k->...->x->j,vvpPath[k][j]存就是xvvpPath[i][j] = vvpPath[k][j];}}}// 打印权值和路径矩阵观察数据for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (vvDist[i][j] == MAX_W){//cout << "*" << " ";printf("%3c", '*');}else{//cout << vvDist[i][j] << " ";printf("%3d", vvDist[i][j]);}}cout << endl;}cout << endl;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){//cout << vvParentPath[i][j] << " ";printf("%3d", vvpPath[i][j]);}cout << endl;}}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/122930.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python百练——第1练】使用Python求100以内的所有偶数

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 作者简介&#xff1a;梦想从未散场&#xff0c;传奇永不落幕&#xff0c;持续更新优质网络知识、Python知识、Linux知识以及各种小技巧&#xff0c;愿你我共同在CSDN进步 欢迎点赞&#x1f44d;收藏&#x1f4c…

Python基础入门例程20-NP20 增加派对名单(一)(列表)

本专栏&#xff1a; Python365基础入门例程 作者&#xff1a;heda3 最近的博文&#xff1a; 1、Python基础入门例程19-NP19 列表的长度&#xff08;列表&#xff09;-CSDN博客 2、Python基础入门例程18-NP18 生成数字列表&#xff08;列表&#xff09;-CSDN博客 3、Pyth…

[Java/力扣100]判断两棵二叉树是否相同

我希望通过这道题&#xff0c;能进一步了解递归思想和“树是递归定义的”这句话 分析 我们的目的是写一个方法来检验两棵树是否相同 什么叫“两棵树相同”&#xff1f;——相同的位置存在相同的结点 有三种情况&#xff1a;1、两棵树一颗为空一颗不为空——不相同&#xff…

Docker网络

目录 1.原生网络 2.自定义网络 3.joined容器 4.端口映射 1.原生网络 docker network ls默认使用桥接模式&#xff0c;桥接到docker0上 docker run -d --name demo nginx yum install -y bridge-utils brctl show host模式&#xff0c;容器和宿主机共享同一网络栈&#xf…

人工智能与航天技术的融合:未来发展的新趋势

人工智能与航天技术的融合&#xff1a;未来发展的新趋势 随着科技的飞速发展&#xff0c;人工智能和航天技术已经成为人类探索未知世界的重要工具。本文将探讨这两个领域的结合点&#xff0c;以及未来的发展趋势和应用前景。通过了解这些技术&#xff0c;读者将更好地理解人工…

私有云:【10】VCenter安装win10

私有云&#xff1a;【10】VCenter安装win10 1、ESXI挂载win10镜像2、VCenter安装win102.1、创建虚拟机2.2、启动虚拟机 此WIN10用来作为以后的远程桌面 1、ESXI挂载win10镜像 2、VCenter安装win10 2.1、创建虚拟机 创建虚拟机 设置名称下一步 选择计算机资源 选择NFS存储 设置…

Android Glide判断图像资源是否缓存onlyRetrieveFromCache,使用缓存数据,Kotlin

Android Glide判断图像资源是否缓存onlyRetrieveFromCache&#xff0c;使用缓存数据&#xff0c;Kotlin import android.graphics.Bitmap import android.os.Bundle import android.util.Log import android.widget.ImageView import androidx.appcompat.app.AppCompatActivity…

华媒舍:日韩媒体发稿推广中8个关键因素帮助你实现突破

在当今经济全球化的时代背景下&#xff0c;日韩地域媒体影响力日益提高。对于需要在这一地区开展发稿推广的人来讲&#xff0c;掌握适度的思路和流程是十分重要的。下面我们就为大家介绍8个关键因素&#xff0c;以帮助你在日韩地域媒体发稿推广中实现突破。 1.科学研究行业在逐…

C++之C++11引入enum class与传统enum关键字总结(二百五十一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

基于 Appium 的 Android UI 自动化测试!

自动化测试是研发人员进行质量保障的重要一环&#xff0c;良好的自动化测试机制能够让开发者及早发现编码中的逻辑缺陷&#xff0c;将风险前置。日常研发中&#xff0c;由于快速迭代的原因&#xff0c;我们经常需要在各个业务线上进行主流程回归测试&#xff0c;目前这种测试大…

深度学习(4)---生成式对抗网络(GAN)

文章目录 一、原理讲述1.1 概念讲解1.2 生成模型和判别模型 二、训练过程2.1 训练原理2.2 损失函数 三、应用 一、原理讲述 1.1 概念讲解 1. 生成式对抗网络&#xff08;Generative Adversarial Network&#xff0c;GAN&#xff09;是一种深度学习模型&#xff0c;是近年来复杂…

私有云:【6】VCenter安装SqlServer

私有云&#xff1a;【6】VCenter安装SqlServer 1、VCenter安装SqlServer1.1、通过模板创建虚拟机1.2、安装sqlserver服务 2、搭建sqlserver群集2.1、安装群集功能2.2、在ad域服务器创建共享文件夹&#xff0c;供集群选举使用 3、创建故障转移群集【只需安装一台即可】3.1、创建…

CTF-Crypto学习记录-第四天 “ “ --- SHA1安全散列算法,实现原理。

文章目录 前言SHA-1加密算法介绍关于SHA-1和MD5 SHA-1 加密过程原文处理设置初始值和数据结构定义加密运算原理过程 在python中调用SHA-1 前言 MD5学习MD5加密算法 SHA-1加密算法介绍 SHA-1&#xff08;Secure Hash Algorithm1&#xff0c;安全散列算法1&#xff09;是一种密…

深度学习:激活函数曲线总结

深度学习&#xff1a;激活函数曲线总结 在深度学习中有很多时候需要利用激活函数进行非线性处理&#xff0c;在搭建网路的时候也是非常重要的&#xff0c;为了更好的理解不同的激活函数的区别和差异&#xff0c;在这里做一个简单的总结&#xff0c;在pytorch中常用的激活函数的…

Table-GPT:让大语言模型理解表格数据

llm对文本指令非常有用&#xff0c;但是如果我们尝试向模型提供某种文本格式的表格数据和该表格上的问题&#xff0c;LLM更有可能产生不准确的响应。 在这篇文章中&#xff0c;我们将介绍微软发表的一篇研究论文&#xff0c;“Table-GPT: Table- tuning GPT for Diverse Table…

10.29数算小复习(选择题细节,二路归并,结构体排序)

排序、复杂度、细节&#xff08;选择题&#xff0c;判断题&#xff09; 对于一个已经排好序的序列&#xff0c;直接插入排序的复杂度是O(n)&#xff0c;而归并排序的复杂度是O(nlogn)。这时候归并排序就不比直接插入排序速度快了。 归并排序的最好、最坏、平均时间都是O(nlogn)…

STM32:TTL串口调试

一.TTL串口概要 TTL只需要两个线就可以完成两个设备之间的双向通信&#xff0c;一个发送电平的I/O称之为TX&#xff0c;与另一个设备的接收I/O口RX相互连接。两设备之间还需要连接地线(GND)&#xff0c;这样两设备就有相同的0V参考电势。 二.TTL串口调试 实现电脑通过STM32发送…

Kubernetes Label Selector

Author&#xff1a;rab 目录 前言一、Labels1.1 定义1.2 案例1.2.1 节点标签1.2.2 对象标签 二、Selector2.1 Node Selector2.2 Service Selector2.3 Deployment Selector2.4 StatefulSet Selector2.5 DaemonSet Selector2.6 HorizontalPodAutoscaler Selector2.7 NetworkPolic…

POJ 1201 Intervals 线段树

一、题目大意 给我们一些闭区间[ai , bi]&#xff0c;其中 1 < ai < bi < 50000&#xff0c;让我们求出一个集合&#xff0c;使得这个集合与 区间 [ai , bi]有 ci个共同元素&#xff0c;对于所有的 1<i <n个区间而言。 二、解题思路 根据题目范围&#xff0c…

SAP从入门到放弃系列之QM动态修改(Dynamic Modification)

目录 一、 概念二、系统操作 一、 概念 结合样本确定&#xff0c;动态修改也发挥着重要作用。根据先前检验的结果&#xff0c;动态修改会自动减少或增加 样本的大小。设置一定的规则&#xff0c;可以减少或增加检验中涉及的工作&#xff0c;也可节约检验成本。但是注意这种情况…