CTF-Crypto学习记录-第四天 “ “ --- SHA1安全散列算法,实现原理。

文章目录

  • 前言
  • SHA-1加密算法介绍
    • 关于SHA-1和MD5
  • SHA-1 加密过程
    • 原文处理
    • 设置初始值和数据结构定义
    • 加密运算原理过程
  • 在python中调用SHA-1

前言

MD5学习MD5加密算法

SHA-1加密算法介绍

SHA-1(Secure Hash Algorithm1,安全散列算法1)是一种密码散列函数。
SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。

SHA-1的历史:

2005年,密码分析人员发现了对SHA-1的有效攻击方法,这表明该算法可能不够安全,不能继续使用,自2010年以来,许多组织建议用SHA-2或SHA-3来替换SHA-1。Microsoft、Google以及Mozilla都宣布,它们旗下的浏览器将在2017年停止接受使用SHA-1算法签名的SSL证书。
2017年2月23日,CWI Amsterdam与Google宣布了一个成功的SHA-1碰撞攻击,发布了两份内容不同但SHA-1散列值相同的PDF文件作为概念证明。
2020年,针对SHA-1的选择前缀冲突攻击已经实际可行。建议尽可能用SHA-2或SHA-3取代SHA-1。

关于SHA-1和MD5

在上一篇学习笔记里学了MD5加密算法,SHA-1和MD5同样是哈希函数,俩者对于任意长度明文的预处理也都是相同的,那么俩者有什么不同呢?

  • 摘要长度 (安全性)
    SHA-1所产生的摘要是160位比MD5产生的摘要长32位,因此在安全性上SHA-1高于MD5。
  • 运算速度
    同样因为,SHA-1的摘要长于MD5,运算步骤也比MD5多了16步,因此运算速度要慢于MD5

关于MD5和SHA-1,在如今现代计算环境中都已经不再被认为是安全的哈希函数了,为了保证数据和应用的安全,应该使用SHA-256或SHA-3等算法。

SHA-1 加密过程

同MD5一样,可以分为三个过程:

原文处理

对于任意长度明文,需要先进行填充处理,使得明文长度为448(mod 512)位,有俩种情况:

  • 原始明文长度mod512不为448,需要进行填充;这里假设原始明文一共有b bit,那就在b+1 bit处填充一个1,后面全部填充0,直到明文长度mod512等于448为止。
  • 第二种情况,原始明文长度mod512正好为448,这种情况也需要进行填充,总共填充512位的数据,直到明文再次mod512等于448为止。

因此填充的数据长度最小为1 bit ,最大为512 bit。‘

再得到448bit长度的明文后,还需要添加64bit的数据,使得明文长度等于512 bit

填充处理完成之后是分组处理

要先将恰好为512整数倍的明文,分成 L 个512 bit长度 的明文分组。接下来对每个512 bit大小的明文分组进行类似于MD5的操作;

  • 先将512 bit 的明文分组,分成 16个 32 bit的子明文分组。可以用 M[k] 表示
  • 之后再将这16个子明文分组扩展到 80个子明文分组。 可以用W[k]表示
    扩充的方式如下:

W t = M t , 当0≤t≤15
W t = ( W t-3 ⊕ W t-8⊕ W t-14⊕ W t-16 ) <<< 1, 当16≤t≤79

设置初始值和数据结构定义

一些相关定义:

SHA 1 针对输入的比特流是按块 (block) 依次进行处理的, 每个块的长度固定为 512 bit, SHA 1 算法允许的最大输入长度为 2^64−1 bit, 在 SHA 1 算法中, 我们将 32 bit 定义为字 (word), 所以每个字可以用 8 位十六进制来表示, 例如对于字 1010 0001 0000 0011 1111 1110 0010 0011 可表示为 A103FE23, 对于一个长度在 [0, 2^32−1] 的整数便可以用一个字来表示, 整数的最低有效 4 位为字的最右侧的十六进制字符, 对于一个整数 z, 若 0≤z<2^64 则 z=(2^32*x+y), 其中 0≤x,y<2^32, 于是 x, y都分别可以用一个字来表示, 我们记这两个字分别为 X, Y, 此时整数 z 便可以使用这对字来表示, 我们记为 (X,Y)

可以将针对bit 的逻辑运算符扩展定义到字上;

X AND Y 为两个字按位逻辑与
X OR Y 为两个字按位逻辑或
X XOR Y 为两个字按位异或
NOT X 为对字 X 的每一位按位取反

除了逻辑运算符,还可以定义字上的算术运算,

X + Y 定义为 (x + y) mod 2^32

最后定义字上的循环左移运算符(逻辑移位),循环左移即是将字的比特整体向左移动 n 位, 左侧溢出的比特位补到右侧空出来的比特位, 我们将这一运算记作 S^n(X), 循环左移可以使用逻辑表达式来描述, 如下所示:

S^n(X) = (X << n) OR (X >> 32 -n)

MD5中有4个初始变量值,而SHA-1中有五个链接变量,如下:

H0=0x67452301H1=0xEFCDAB89H2=0x98BADCFEH3=0x10325476H4=0xC3D2E1F0

此外 SHA-1定义了4个逻辑函数和4个常量。每个逻辑函数针对3个字作为输入,函数的输出为一个字,其中 t (0 ≤ t ≤ 79) 是变量, 函数的表达式如下:

  f(t;B,C,D) = (B AND C) OR ((NOT B) AND D)         ( 0 <= t <= 19)f(t;B,C,D) = B XOR C XOR D                        (20 <= t <= 39)f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D)  (40 <= t <= 59)f(t;B,C,D) = B XOR C XOR D                        (60 <= t <= 79)

4个常量分别如下(十六进制表示):

 K(t) = 5A827999         ( 0 <= t <= 19)K(t) = 6ED9EBA1         (20 <= t <= 39)K(t) = 8F1BBCDC         (40 <= t <= 59)K(t) = CA62C1D6         (60 <= t <= 79)

加密运算原理过程

SHA1有4轮运算,每一轮包括20个步骤,一共80步。

下图是 SHA-1算法中的一个回圈;
在这里插入图片描述

  • 也如MD5一样,SHA-1会现将H0,H1,H2,H3,H4,H5五个初始变量依次放入ABCDE中;即 A = H0, B = H1, C = H2, D = H3, E = H4
  • 定义循环变量 t, 对 t 从 0 到 79 依次赋值, 每一次循环执行如下操作:
    • TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t);
    • E = D;
    • D = C;
    • C = S^30(B);
    • B = A;
    • A = TEMP;
  • 分别令 H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E

从 M(0) 开始每一轮计算后会得到新的 H0, H1, … , H4, 下一轮计算中使用上一次产生的新值, 对最后一个块计算完毕后得到的 H0, H1, … , H4便是算法的输出, 即原文的 SHA 1 哈希值

在python中调用SHA-1

import hashlib# 要哈希的数据
data = b'Hello, World!'  # 在 Python 3 中,请确保数据以字节字符串的形式表示# 创建一个 SHA-1 哈希对象
sha1 = hashlib.sha1()# 更新哈希对象以处理数据
sha1.update(data)# 获取 SHA-1 哈希值的十六进制表示
sha1_hash = sha1.hexdigest()print("SHA-1 哈希值:", sha1_hash)

输出:

SHA-1 哈希值: 0a0a9f2a6772942557ab5355d76af442f8f65e01

文献参考:

https://www.cnblogs.com/scu-cjx/p/6878853.html
https://sunyunqiang.com/blog/sha1/
https://zh.wikipedia.org/zh-hans/SHA-1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/122910.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习:激活函数曲线总结

深度学习&#xff1a;激活函数曲线总结 在深度学习中有很多时候需要利用激活函数进行非线性处理&#xff0c;在搭建网路的时候也是非常重要的&#xff0c;为了更好的理解不同的激活函数的区别和差异&#xff0c;在这里做一个简单的总结&#xff0c;在pytorch中常用的激活函数的…

Table-GPT:让大语言模型理解表格数据

llm对文本指令非常有用&#xff0c;但是如果我们尝试向模型提供某种文本格式的表格数据和该表格上的问题&#xff0c;LLM更有可能产生不准确的响应。 在这篇文章中&#xff0c;我们将介绍微软发表的一篇研究论文&#xff0c;“Table-GPT: Table- tuning GPT for Diverse Table…

10.29数算小复习(选择题细节,二路归并,结构体排序)

排序、复杂度、细节&#xff08;选择题&#xff0c;判断题&#xff09; 对于一个已经排好序的序列&#xff0c;直接插入排序的复杂度是O(n)&#xff0c;而归并排序的复杂度是O(nlogn)。这时候归并排序就不比直接插入排序速度快了。 归并排序的最好、最坏、平均时间都是O(nlogn)…

STM32:TTL串口调试

一.TTL串口概要 TTL只需要两个线就可以完成两个设备之间的双向通信&#xff0c;一个发送电平的I/O称之为TX&#xff0c;与另一个设备的接收I/O口RX相互连接。两设备之间还需要连接地线(GND)&#xff0c;这样两设备就有相同的0V参考电势。 二.TTL串口调试 实现电脑通过STM32发送…

Kubernetes Label Selector

Author&#xff1a;rab 目录 前言一、Labels1.1 定义1.2 案例1.2.1 节点标签1.2.2 对象标签 二、Selector2.1 Node Selector2.2 Service Selector2.3 Deployment Selector2.4 StatefulSet Selector2.5 DaemonSet Selector2.6 HorizontalPodAutoscaler Selector2.7 NetworkPolic…

POJ 1201 Intervals 线段树

一、题目大意 给我们一些闭区间[ai , bi]&#xff0c;其中 1 < ai < bi < 50000&#xff0c;让我们求出一个集合&#xff0c;使得这个集合与 区间 [ai , bi]有 ci个共同元素&#xff0c;对于所有的 1<i <n个区间而言。 二、解题思路 根据题目范围&#xff0c…

SAP从入门到放弃系列之QM动态修改(Dynamic Modification)

目录 一、 概念二、系统操作 一、 概念 结合样本确定&#xff0c;动态修改也发挥着重要作用。根据先前检验的结果&#xff0c;动态修改会自动减少或增加 样本的大小。设置一定的规则&#xff0c;可以减少或增加检验中涉及的工作&#xff0c;也可节约检验成本。但是注意这种情况…

工业相机常见的工作模式、触发方式

参考&#xff1a;机器视觉——工业相机的触发应用(1) - 知乎 工业相机常见的工作模式一般分为&#xff1a; 触发模式连续模式同步模式授时同步模式 触发模式&#xff1a;相机收到外部的触发命令后&#xff0c;开始按照约定时长进行曝光&#xff0c;曝光结束后输出一帧图像。…

傅立叶级数的意义--傅立叶级数是怎么来的

写这篇文章的起因是14年有道题目&#xff1a; 本题实质上是考察傅立叶级数的意义&#xff0c;因此要求扩大为不能只拘泥于傅里叶级数的计算相关问题&#xff0c;故作此篇。 一、课本上的内容 傅立叶级数&#xff1a; 设函数 f ( x ) f(x) f(x)是周期为 2 l 2l 2l的周期函数&…

应用案例|基于三维机器视觉的机器人引导电动汽车充电头自动插拔应用方案

Part.1 项目背景 人类对减少温室气体排放、提高能源效率以及减少对化石燃料的依赖&#xff0c;加速了电动汽车的普及&#xff0c;然而&#xff0c;电动汽车的充电依然面临一些挑战。传统的电动汽车充电通常需要人工干预&#xff0c;插入和拔出充电头&#xff0c;这不仅可能导致…

计算机中了faust勒索病毒怎么办,faust勒索病毒解密,数据恢复

近年来网络技术得到了飞速发展&#xff0c;为人们的企业生产生活提供了极大便利&#xff0c;但随之而来的网络安全威胁也不断增加&#xff0c;近期&#xff0c;云天数据恢复中心收到了很多企业的求助&#xff0c;企业的计算机服务器遭到了faust勒索病毒攻击&#xff0c;导致企业…

Vue3.0插槽

用法&#xff1a; 父组件App.vue <template><div><!--将html代码插入到子组件中带默认名称的插槽中--><AChild><!--这段html会插入到AChild组件中<slot></slot>插槽中--><!-- 注意&#xff1a;写在父组件中的html代码只能在父组…

ubuntu 18.04 编译安装flexpart 10.4(2023年) —— 筑梦之路

2023年10月29日 环境说明 操作系统版本&#xff1a;ubuntu 18.04 python版本&#xff1a;3.6.9 gcc版本&#xff1a;7.5.0 编译安装路径&#xff1a;/usr/local cmake: 3.10.2 所需要的源码包我已经打包放到我的资源。 2021年1月份已经写过一篇Ubuntu 编译安装的帖子F…

电子器件 二极管

二极管主要是利用其单向导电性&#xff0c;通常用于整流、检波、限幅、元件保护等&#xff0c;在数字电路中常作为开关元件。 一、常用二极管类型 高频二极管 1N4148 等 肖特基二极管 SS14 SS34 SS54 等 快恢复二极管&#xff08;FRD&#xff09; 可以用快恢复二极管代替肖特…

YUV的红蓝颠倒(反色)的原因及解决

原因 UV排列反了。 比如说&#xff0c;NV21和YUV420SP的Y排列相同&#xff0c;UV则相反。给你YUV420SP&#xff0c;你当作NV21保存JPG&#xff0c;就会发生红蓝拿起。 解决办法 就是把UV互换一下。具体代码&#xff1a; NV21转YUV420SP的代码_nv21转yuv420格式-CSDN博客 …

【机器学习可解释性】4.SHAP 值

机器学习可解释性 1.模型洞察的价值2.特征重要性排列3.部分依赖图4.SHAP 值5.SHAP 值 高级使用 正文 理解各自特征的预测结果&#xff1f; 介绍 您已经看到(并使用)了从机器学习模型中提取一般解释技术。但是&#xff0c;如果你想要打破模型对单个预测的工作原理? SHAP 值…

C++模板编程和标准模板库(STL)

1、C模板编程 1&#xff09;函数模板 #include <iostream> using namespace std;// 声明一个泛型类型T&#xff0c;参数化数据类型 template <typename T> // 定义一个函数模板 T man(T a, T b) {return (a>b?a:b); }int main() {// 使用的时候没有指定参数类…

开源3D激光(视觉)SLAM算法汇总(持续更新)

原文连接 目录 一、Cartographer 二、hdl_graph_slam 三、LOAM 四、LeGO-LOAM 五、LIO-SAM 六、S-LOAM 七、M-LOAM 八、livox-loam 九、Livox-Mapping 十、LIO-Livox 十一、FAST-LIO2 十二、LVI-SAM 十三、FAST-Livo 十四、R3LIVE 十五、ImMesh 十六、Point-LIO 一、Cartograph…

canvas基础3 -- 交互

点击交互 使用 isPointInPath(x, y) 判断鼠标点击位置在不在图形内 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"&…

拿到 phpMyAdmin 如何获取权限

文章目录 拿到 phpMyAdmin 如何获取权限1. outfile 写一句话木马2. general_log_file 写一句话木马 拿到 phpMyAdmin 如何获取权限 1. outfile 写一句话木马 尝试使用SQL注入写文件的方式&#xff0c;执行 outfile 语句写入一句话木马。 select "<?php eval($_REQU…