注意力机制、Transformer模型、生成式模型、目标检测算法、图神经网络、强化学习、深度学习模型可解释性与可视化方法等详解

采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、Swin Transformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GAN、扩散模型Diffusion Model等)、目标检测算法(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SDD等)、图神经网络(GCN、GAT、GIN等)、强化学习(Q-Learning、DQN等)、深度学习模型可解释性与可视化方法(CAM、Grad-CAM、LIME、t-SNE等)的基本原理及Python代码实现方法。

【条件】:本教程为进阶学习,需要学员掌握卷积神经网络、循环神经网络等前序基础知识。同时,应具备一定的Python编程基础,熟悉numpy、pandas、matplotlib、scikit-learn、pytorch等第三方模块库。

【专家】:郁磊(副教授),主要从事Python/Matlab 编程、机器学习与深度学习、数据可视化、生理系统建模与仿真、生物医学信号处理,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。已发表多篇高水平的国际学术研究论文。

专题一 注意力(Attention)机制详解

①注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展)
②注意力机制的基本原理:用机器翻译任务带你了解Attention机制、如何计算注意力权重?
③注意力机制的一些变体(硬性注意力机制、软性注意力机制、键值对注意力机制、多头注意力机制、多头注意力机制、……)
④注意力机制的可解释性(如何使用注意力机制进行模型解释?注意力机制的可视化技术?)
⑤案例演示、实操练习

专题二 Transformer模型详解

①Transformer模型拓扑结构
②Transformer模型工作原理(为什么Transformer模型需要位置信息?位置编码的计算方法?Transformer模型的损失函数?)
③自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……)。
④计算视觉(CV)领域的Transformer模型:DETR / ViT / Swin Transformer(DERT:基于Transformer的检测头设计、双向匹配损失;ViT:图像如何被分割为固定大小的patches?如何将图像patches线性嵌入到向量中?Transformer在处理图像上的作用?Swin:窗口化自注意力机制、层次化的Transformer结构、如何利用位移窗口实现长范围的依赖?)
⑤案例演示、实操练习

专题三 生成式模型详解

①变分自编码器VAE(自编码器的基本结构与工作原理、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)
②生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数)
③扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)
④跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)
⑤案例演示、实操练习

专题四 目标检测算法详解

①目标检测任务与图像分类识别任务的区别与联系
②两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )
③一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)
④案例演示、实操练习

专题五 图神经网络详解

①图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)
②图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)
③图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)
④图卷积网络(GCN)的工作原理
⑤图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络
⑥案例演示、实操练习

专题六 强化学习详解

①强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?
②Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)
③深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)
④案例演示、实操练习

专题七 深度学习模型可解释性与可视化方法详解

①什么是模型可解释性?为什么需要对深度学习模型进行解释?
②可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
③类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解
④t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征
⑤案例演示、实操练习

第八章 讨论与答疑


更多应用

包含:Python机器学习、数据挖掘、PyTorch机器学习、MATLAB机器学习、R语言【Tidyverse、Tidymodel】、地理加权回归、结构方程模型、贝叶斯网络模型、混合效应(多水平层次嵌套)模型、Copula变量相关性、极值统计学、分位数回归、网络爬虫、科研数据可视化、Nvivo、Citespace和vosviewer文献计量学、AI人工智能等...

★关 注【科研充电吧】公 众 号,获取海量教程和资源

带您了解ChatGPT强大功能!-CSDN博客文章浏览阅读144次。ChatGPT 在论文写作与编程方面也具备强大的能力。无论是进行代码生成、错误调试还是解决编程难题,ChatGPT都能为您提供实用且高质量的建议和指导,提高编程效率和准确性。此外,ChatGPT是一位出色的合作伙伴,可以为您提供论文写作的支持。它可以为您提供论文结构指导、段落重组建议,甚至是对论文内容的进一步拓展和丰富。利用ChatGPT的写作能力,您可以更好地组织思路、提升论文的逻辑性和质量。https://blog.csdn.net/WangYan2022/article/details/134031345?spm=1001.2014.3001.5502全面助力AI人工智能在科研、教学与实践技能_WangYan2022的博客-CSDN博客文章浏览阅读133次。在人工智能领域进行研究和深耕,将帮助您在茫茫职场的竞争人海中脱颖而出,登上未来科技巨变的最前沿,比他人更加敏锐、更加迅捷地抓住未来的动向https://blog.csdn.net/WangYan2022/article/details/131846581?spm=1001.2014.3001.5502基于R语言、MATLAB、Python机器学习方法与案例分析_r语言对hmdb51视频分类_WangYan2022的博客-CSDN博客文章浏览阅读3.1k次,点赞3次,收藏22次。机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,总结和分析实验结果的利器。_r语言对hmdb51视频分类https://blog.csdn.net/WangYan2022/article/details/126655566?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/120842.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【代码思路】2023mathorcup 大数据数学建模B题 电商零售商家需求预测及库存优化问题

各位同学们好,我们之前已经发布了第一问的思路视频,然后我们现在会详细的进行代码和结果的一个讲解,然后同时我们之后还会录制其他小问更详细的思路以及代码的手把手教学。 大家我们先看一下代码这一部分,我们采用的软件是Jupyte…

通过流量安全分析发现主机异常

主机异常分析在计算机系统中具有重要意义。以下是主机异常分析的几个关键点: 1、检测安全威胁:主机是计算机系统的核心组件,通过对主机异常进行分析,可以快速检测到潜在的安全威胁,如恶意软件、病毒感染、黑客入侵等。…

js中的Formdata数据结构

这里写目录标题 一、基本概念二、常用方法1.append(name, value)、set(name, value)2.get()、getAll()3.has(name)4.delete(name)5.keys(),values(),entries() 三、其他细节1.for of遍历2.转为对象3.结合 URLSearchParams 转为queryString 一、基本概念 FormData 提供了一种表…

p5.js画布操作实战:创建,绑定指定元素,动态调整大小,隐藏滚动条,删除画布

文章简介 之前在 《p5.js 光速入门》 里粗略讲过一下如何使用 p5.js 创建画布。 这次要介绍几个 p5.js 提供的画布相关的方法。 创建画布时的相关配置。让画布绑定指定元素。重置画布大小。删除画布。 学习本文前你需要具备一点 p5.js 的知识,想了解的请查看 《p…

【Java 进阶篇】Java Request 继承体系详解

在Java编程中,Request(请求)是一个常见的概念,特别是在Web开发中。Request通常用于获取来自客户端的信息,以便服务器能够根据客户端的需求提供相应的响应。在Java中,Request通常涉及到一系列类和接口&#…

CAS 机制的实现原理分析

在 synchronized 中很多地方都用到了CAS机制,它的叫法有很多,比如CompareAndSwap、CompareAndExchange、CompareAndSet,它是一个能够进行比较和替换的方法,这个方法能够在多线程环境下保证对一个共享变量进行修改时的原子性不变。…

CentOS 编译安装TinyXml2

安装 TinyXml2 Git 源码下载地址:https://github.com/leethomason/tinyxml2 步骤1:首先,你需要下载tinyxml2的源代码。你可以从Github或者源代码官方网站下载。并上传至/usr/local/source_code/ 步骤2:下载完成后,需要将源代码解…

『力扣刷题本』:合并两个有序链表(递归解法)

一、题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4]示例 2: 输入:l1 [], l2 [] 输出&#x…

Python---练习:使用for循环实现用户名+密码认证

案例: 用for循环实现用户登录 ① 输入用户名和密码 ② 判断用户名和密码是否正确(usernamelaowang,passwordlw123) ③ 登录仅有三次机会,超过3次会报错 思考: 用户登陆情况有3种: ① 用户名错误(此时…

Python OpenCV将n×n的小图拼接成m×m的大图

Python OpenCV将nn的小图拼接成mm的大图 前言前提条件相关介绍实验环境n \times n的小图拼接成m \times m的大图代码实现 前言 由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小…

J2EE项目部署与发布(Windows版本)

一、单机项目 1.将项目共享到虚拟机 2.解压并将war包放入tomcat 3.运行tomcat并查看该项目的数据库配置 4.数据库导入脚本 先创建一个符合项目数据库配置的数据库名称 然后就是将项目脚本数据传输过去即可,如下: 项目数据传输过来了之后,我们…

分组卷积的思想神了

大家好啊,我是董董灿。 最近,分组卷积帮我解决了一个大忙,事情是这样的。 这几天遇到一个头疼的问题,就是要在某一芯片上完成一个神经网络的适配,这个神经网络中卷积居多,并且有一些卷积的通道数很大&…

React之服务端渲染

一、是什么 在SSR中 (opens new window),我们了解到Server-Side Rendering ,简称SSR,意为服务端渲染 指由服务侧完成页面的 HTML 结构拼接的页面处理技术,发送到浏览器,然后为其绑定状态与事件,成为完全可…

番外8.2 --- 后续

### 01:dd命令:在新挂载点创建swap文件大小10MB;(dd if/dev/zero of/swap bs1024 count10240) 02:给swap建立文件系统,将其分属到swap文件(mkswap /swap; swapon /swap &…

【linux系统】服务器安装Pycharm

文章目录 安装pycharm步骤1. 进入pycharm官网2. 上传到服务器3. 安装过程 摘要:pycharm是Python语言的图形化开发工具。因为如果在Linux环境下的Python shell 中直接进行编程,其无法保存与修改,在大型项目当中这是很不方便的,而py…

KV STUDIO的安装与实践(一)

目录 什么是KV STUDIO? 如何安装KV STUDIO? 如何学习与使用KV STUDIO(在现实中的应用)? 应用一(在现实生活中机器内部plc的读取与替换) 读取 KV STUDIO实现显示器的检测!&#…

Android拖放startDragAndDrop拖拽onDrawShadow动态添加View,Kotlin(3)

Android拖放startDragAndDrop拖拽onDrawShadow动态添加View,Kotlin(3) import android.content.ClipData import android.graphics.Canvas import android.graphics.Point import android.os.Bundle import android.util.Log import android.…

北邮22级信通院数电:Verilog-FPGA(7)第七周实验(1):带使能端的38译码器全加器(关注我的uu们加群咯~)

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章,请访问专栏: 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 关注作者的uu们可以进群啦~ 目录 方法一&#xff…

泛微OA之获取每月固定日期

文章目录 1.需求及效果1.1需求1.2效果 2. 思路3. 实现 1.需求及效果 1.1需求 需要获取每个月的7号作为需发布日期,需要自动填充1.2效果 自动获取每个月的七号2. 思路 1.功能并不复杂,可以用泛微前端自带的插入代码块的功能来实现。 2.将这需要赋值的…

LVS集群-NAT模式

集群的概念: 集群:nginx四层和七层动静分离 集群标准意义上的概念:为解决特定问题将多个计算机组合起来形成一个单系统 集群的目的就是为了解决系统的性能瓶颈。 垂直扩展:向上扩展,增加单个机器的性能,…