pytorch 入门 (五)案例三:乳腺癌识别识别-VGG16实现

本文为🔗小白入门Pytorch内部限免文章

  • 🍨 本文为🔗小白入门Pytorch中的学习记录博客
  • 🍦 参考文章:【小白入门Pytorch】乳腺癌识别
  • 🍖 原作者:K同学啊

在本案例中,我将带大家探索一下深度学习在医学领域的应用–完成乳腺癌识别,乳腺癌是女性最常见的癌症形式,浸润性导管癌 (IDC) 是最常见的乳腺癌形式。准确识别和分类乳腺癌亚型是一项重要的临床任务,利用深度学习方法识别可以有效节省时间并减少错误。 我们的数据集是由多张以 40 倍扫描的乳腺癌 (BCa) 标本的完整载玻片图像组成。

关于环境配置请看我之前缩写博客:https://blog.csdn.net/qq_33489955/article/details/132890434?spm=1001.2014.3001.5501

数据集:链接:https://pan.baidu.com/s/1xkqsqsRRwlBOl5L9t_U0UA?pwd=vgqn
提取码:vgqn
–来自百度网盘超级会员V4的分享

目录

  • 一、 前期准备
    • 1. 设置GPU
    • 2. 导入数据
    • 3. 划分数据集
  • 二、手动搭建VGG-16模型
      • 1. 搭建模型
    • 2. 查看模型详情
  • 三、 训练模型
    • 1. 编写训练函数
    • 3. 编写测试函数
    • 3. 正式训练
  • 四、 结果可视化
    • 1. Loss与Accuracy图
    • 2. 指定图片进行预测
    • 3. 模型评估

一、 前期准备

import torchprint(torch.__version__) # 查看pytorch版本
2.0.1+cu118

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

2. 导入数据

import os,PIL,random,pathlibdata_dir = './data/2-data/'
data_dir = pathlib.Path(data_dir)

提问:已经有路径不是直接使用就可以了吗,为什么还要将其转化为路径对象。

回答:当我们使用传统的字符串来表示文件路径时,确实可以工作,但pathlib提供的对象方法对于文件路径的操作更为简洁和直观。

以下是使用pathlib的一些优点:

  1. 跨平台兼容性pathlib自动处理不同操作系统的路径分隔符问题。例如,Windows使用\,而Unix和Mac使用/。使用pathlib,你不需要关心这些细节。
  2. 链式操作:你可以方便地使用链式方法来处理路径。例如,path.parent返回父目录,path.stem返回文件的基本名称(不带扩展名)等。
  3. 读写简便pathlib.Path对象有read_text(), write_text(), read_bytes(), 和write_bytes()等方法,可以直接读写文件,而无需再使用open函数。
  4. 创建和删除目录:使用pathlib, 你可以很容易地创建 (mkdir()) 或删除 (rmdir()) 目录。

以下是一个简单的例子来比较两者:

使用传统的os模块:

import os  
file_path = os.path.join("folder1", "folder2", "myfile.txt")  

使用pathlib

from pathlib import Path  
file_path = Path("folder1") / "folder2" / "myfile.txt"  

所以,虽然直接使用字符串路径是可以的,但使用pathlib可以使代码更加简洁、可读和跨平台兼容。

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(data_dir, transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 13403Root location: data\2-dataStandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
total_data.class_to_idx
{'0': 0, '1': 1}

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x14191aec850>,<torch.utils.data.dataset.Subset at 0x141c3e693d0>)
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=8)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=8)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

提问:为什么结果只输出一次,是因为测试数据集只有一个批次,即32张图片吗

回答:不,结果只输出一次是因为您的代码中包含了一个 break 语句。这个 break 会在第一次迭代后立即退出 for 循环,因此您只看到了第一个批次的输出。

如果您想确认 test_dl 中有多少批次,您可以尝试以下代码:

num_batches = len(test_dl)  
print("Number of batches in test_dl:", num_batches)  

这将告诉您 test_dl 中有多少个批次。如果这个数字是1,那么确实只有32张图片。但是,如果这个数字大于1,那么 test_dl 会包含更多的图片。每个批次都有32张图片(除了可能的最后一个批次,它可能包含少于32张图片,取决于数据集的总数)。

二、手动搭建VGG-16模型

VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;
  • 3个全连接层(Fully connected Layer),用classifier表示;
  • 5个池化层(Pool layer)。

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

Image Name

1. 搭建模型

import torch.nn.functional as Fclass vgg16(nn.Module):def __init__(self):super(vgg16, self).__init__()# 卷积块1self.block1 = nn.Sequential(  # # 这定义了一个名为block1的属性。nn.Sequential是一个容器,它按照它们被添加到容器中的顺序执行其中的层或操作。nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), # 这添加了一个2D卷积层。它接受3个通道的输入(例如RGB图像),并产生64个通道的输出。它使用3x3的卷积核,步长为1,和1的填充。nn.ReLU(), # 这添加了一个ReLU激活函数。它将所有的负值变为0,其他值保持不变。nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),  # 这是另一个2D卷积层。它接受上一个卷积层的64个通道的输出,并产生64个通道的输出。nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) # # 这添加了一个2D最大池化层。它使用2x2的窗口和2的步长来减少每个通道的尺寸的一半。)# 卷积块2self.block2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块3self.block3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块4self.block4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块5self.block5 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 全连接网络层,用于分类self.classifier = nn.Sequential(nn.Linear(in_features=512*7*7, out_features=4096),nn.ReLU(),nn.Linear(in_features=4096, out_features=4096),nn.ReLU(),nn.Linear(in_features=4096, out_features=2))def forward(self, x):x = self.block1(x)x = self.block2(x)x = self.block3(x)x = self.block4(x)x = self.block5(x)x = torch.flatten(x, start_dim=1)x = self.classifier(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = vgg16().to(device)
model
Using cuda device

vgg16((block1): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU()(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU()(4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False))(block2): Sequential((0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU()(2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU()(4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False))(block3): Sequential((0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU()(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU()(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(5): ReLU()(6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False))(block4): Sequential((0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU()(2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU()(4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(5): ReLU()(6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False))(block5): Sequential((0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU()(2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU()(4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(5): ReLU()(6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU()(2): Linear(in_features=4096, out_features=4096, bias=True)(3): ReLU()(4): Linear(in_features=4096, out_features=2, bias=True))
)

2. 查看模型详情

!pip install torchsummary
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: torchsummary in c:\users\cheng\appdata\roaming\python\python310\site-packages (1.5.1)
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 64, 224, 224]           1,792ReLU-2         [-1, 64, 224, 224]               0Conv2d-3         [-1, 64, 224, 224]          36,928ReLU-4         [-1, 64, 224, 224]               0MaxPool2d-5         [-1, 64, 112, 112]               0Conv2d-6        [-1, 128, 112, 112]          73,856ReLU-7        [-1, 128, 112, 112]               0Conv2d-8        [-1, 128, 112, 112]         147,584ReLU-9        [-1, 128, 112, 112]               0MaxPool2d-10          [-1, 128, 56, 56]               0Conv2d-11          [-1, 256, 56, 56]         295,168ReLU-12          [-1, 256, 56, 56]               0Conv2d-13          [-1, 256, 56, 56]         590,080ReLU-14          [-1, 256, 56, 56]               0Conv2d-15          [-1, 256, 56, 56]         590,080ReLU-16          [-1, 256, 56, 56]               0MaxPool2d-17          [-1, 256, 28, 28]               0Conv2d-18          [-1, 512, 28, 28]       1,180,160ReLU-19          [-1, 512, 28, 28]               0Conv2d-20          [-1, 512, 28, 28]       2,359,808ReLU-21          [-1, 512, 28, 28]               0Conv2d-22          [-1, 512, 28, 28]       2,359,808ReLU-23          [-1, 512, 28, 28]               0MaxPool2d-24          [-1, 512, 14, 14]               0Conv2d-25          [-1, 512, 14, 14]       2,359,808ReLU-26          [-1, 512, 14, 14]               0Conv2d-27          [-1, 512, 14, 14]       2,359,808ReLU-28          [-1, 512, 14, 14]               0Conv2d-29          [-1, 512, 14, 14]       2,359,808ReLU-30          [-1, 512, 14, 14]               0MaxPool2d-31            [-1, 512, 7, 7]               0Linear-32                 [-1, 4096]     102,764,544ReLU-33                 [-1, 4096]               0Linear-34                 [-1, 4096]      16,781,312ReLU-35                 [-1, 4096]               0Linear-36                    [-1, 2]           8,194
================================================================
Total params: 134,268,738
Trainable params: 134,268,738
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.52
Params size (MB): 512.19
Estimated Total Size (MB): 731.29
----------------------------------------------------------------

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

3. 正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

import copyoptimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数epochs     = 10train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)print('Done')
Epoch: 1, Train_acc:76.6%, Train_loss:0.487, Test_acc:82.7%, Test_loss:0.385, Lr:1.00E-04
Epoch: 2, Train_acc:84.9%, Train_loss:0.364, Test_acc:79.9%, Test_loss:0.442, Lr:1.00E-04
Epoch: 3, Train_acc:84.0%, Train_loss:0.376, Test_acc:84.3%, Test_loss:0.349, Lr:1.00E-04
Epoch: 4, Train_acc:85.7%, Train_loss:0.339, Test_acc:86.1%, Test_loss:0.319, Lr:1.00E-04
Epoch: 5, Train_acc:86.3%, Train_loss:0.329, Test_acc:85.5%, Test_loss:0.331, Lr:1.00E-04
Epoch: 6, Train_acc:86.3%, Train_loss:0.324, Test_acc:86.2%, Test_loss:0.315, Lr:1.00E-04
Epoch: 7, Train_acc:86.8%, Train_loss:0.313, Test_acc:87.8%, Test_loss:0.298, Lr:1.00E-04
Epoch: 8, Train_acc:87.3%, Train_loss:0.302, Test_acc:86.3%, Test_loss:0.325, Lr:1.00E-04
Epoch: 9, Train_acc:87.7%, Train_loss:0.297, Test_acc:84.7%, Test_loss:0.363, Lr:1.00E-04
Epoch:10, Train_acc:88.5%, Train_loss:0.282, Test_acc:87.7%, Test_loss:0.295, Lr:1.00E-04
Done

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()


请添加图片描述

2. 指定图片进行预测

from PIL import Image classes = ["正常细胞", "乳腺癌细胞"]def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./data/2-data/0/8863_idx5_x451_y501_class0.png', model=model, transform=train_transforms, classes=classes)
预测结果是:正常细胞

请添加图片描述

3. 模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
(0.8780305856023871, 0.29799242158021244)
# 查看是否与我们记录的最高准确率一致
epoch_test_acc
0.8780305856023871

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/120211.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp:谷歌地图,实现地图展示,搜索功能,H5导航

页面展示 APP H5 谷歌地图功能记录,谷歌key申请相对复杂一些,主要需要一些国外的身份信息。 1、申请谷歌key 以下是申请谷歌地图 API 密钥的流程教程: 登录谷歌开发者控制台:打开浏览器,访问 Google Cloud Platform Console。 1、创建或选择项目:如果你还没有创建项目…

trucksim常见问题

一、Error: Unable to load .vs data from “D:\Users\Public\Documents\TruckSim2019.0 Data\Results\Run_e24aa2… LastRun.vs”.Reason for failure: Invalid character OxFFFFFFB2 in string"" on line 4.Would you like to continue receiving alerts of this t…

【分享】7-Zip压缩包的密码可以取消吗?

7-Zip压缩包设置了“密码保护”&#xff0c;后面又不想要了&#xff0c;可以取消吗&#xff1f; 首先&#xff0c;我们要分两种情况来看&#xff0c;是记得密码&#xff0c;但不想每次打开压缩包都要输入密码&#xff0c;所以想取消密码&#xff0c;还是把密码忘记了所以想取消…

搜维尔科技:【应用】配备MTi-3的轻便型ROV,在水下进行地理标记视觉检测

部署潜水员进行水下摄像&#xff0c;不仅难度高而且费用昂贵&#xff0c;需要受过潜水和摄像两方面培训的专业人员来进行。但有些水下作业任务例如拍摄海底管道内部的照片&#xff0c;由于人员无法进入或危险度高的原因&#xff0c;无法由潜水员完成。 如今&#xff0c;俄罗…

openEuler 22.03 LTS 环境使用 Docker Compose 一键部署 JumpServer (all-in-one 模式)

环境回顾 上一篇文章中&#xff0c;我们讲解了 openEuler 22.03 LTS 安装 Docker CE 和 Dcoker Compose&#xff0c;部署的软件环境版本分别如下&#xff1a; OS 系统&#xff1a;openEuler 22.03 LTS(openEuler-22.03-LTS-x86_64-dvd.iso)Docker Engine&#xff1a;Docker C…

Linux--进程等待

1.什么是进程等待 1.通过系统调用wait/waitid,来对子进程进行进行检测和回收的功能。 2.为什么有进程等待 1.对于每个进程来说&#xff0c;如果子进程终止&#xff0c;父进程没有停止&#xff0c;就会形成僵尸进程&#xff0c;导致内存泄露&#xff0c;为了防止僵尸进程的形成…

GIT在window是 配置SSHKEY

1、打开你得命令行工具&#xff0c;输入&#xff1a; cd ~/.ssh2、生成密钥 #设置自己的邮箱&#xff0c;随意设置 $ ssh-keygen -t rsa -C "wqzbxh163.com"#输入保存密钥的文件名字 Enter file in which to save the key (/c/Users/dahai/.ssh/id_rsa): wqzbxh剩下…

SpringBoot集成Redis Cluster集群(附带Linux部署Redis Cluster高可用集群)

目录 一、前言二、集成配置2.1、POM2.2、添加配置文件application.yml2.3、编写配置文件2.4、编写启动类2.5、编写测试类测试是否连接成功 一、前言 这里会使用到spring-boot-starter-data-redis包&#xff0c;spring boot 2的spring-boot-starter-data-redis中&#xff0c;默…

域名系统 DNS

DNS 概述 域名系统 DNS(Domain Name System)是因特网使用的命名系统&#xff0c;用来把便于人们使用的机器名字转换成为 IP 地址。域名系统其实就是名字系统。为什么不叫“名字”而叫“域名”呢&#xff1f;这是因为在这种因特网的命名系统中使用了许多的“域(domain)”&#x…

2023年最受欢迎的11个UI设计师网站,助你成为行业翘楚

作为一名优秀的UI设计师&#xff0c;快速寻找灵感&#xff0c;保持审美在线&#xff0c;了解行业动态绝对是一项职业必备技能。 今天小编为各位小伙伴整理了一些UI设计师必看的绝佳网站。你可以从这些网站中了解行业最新动态&#xff0c;寻找创意灵感、学习优秀作品&#xff0…

ModbusTCP 转 Profinet 主站网关控制汇川伺服驱动器配置案例

ModbusTCP Client 通过 ModbusTCP 控制 Profinet 接口设备&#xff0c;Profinet 接口设备接入 DCS/工控机等 兴达易控ModbusTCP转Profinet主站网关&#xff08;XD-ETHPNM20&#xff09;采用数据映射方式进行工作。 使用设备&#xff1a;兴达易控ModbusTCP 转 Profinet 主站网关…

DeOldify 接口化改造 集成 Flask

类似的图片修复项目 GFPGAN 的改造见我另一篇文 https://blog.csdn.net/weixin_43074462/article/details/132497146 DeOldify 是一款开源软件&#xff0c;用于给黑白照片或视频上色&#xff0c;效果还不错。 安装部署教程请参考别的文章&#xff0c;本文基于你给项目跑通&…

【MySQL索引与优化篇】索引的数据结构

文章目录 1. 概述2. 常见索引结构2.1 聚簇索引2.2 二级索引(辅助索引、非聚簇索引)2.3 联合索引 3. InnoDB的B树索引的注意事项3.1 根页面位置万年不动3.2 内节点中目录项记录的唯一性 4. MyISAM中的索引方案5. InnoDB和MyISAM对比6. 小结7. 补充&#xff1a;MySQL数据结构的合…

JavaWeb——关于servlet种mapping地址映射的一些问题

6、Servlet 6.4、Mapping问题 一个Servlet可以指定一个映射路径 <servlet-mapping><servlet-name>hello</servlet-name><url-pattern>/hello</url-pattern> </servlet-mapping>一个Servlet可以指定多个映射路径 <servlet-mapping>&…

JAVA-编程基础-11-04-java IO 字符流

Lison <dreamlison163.com>, v1.0.0, 2023.05.07 JAVA-编程基础-11-04-java IO 字符流 文章目录 JAVA-编程基础-11-04-java IO 字符流字符流Reader 和 Writer字符输入流&#xff08;Reader&#xff09;**FileReader构造方法****FileReader读取字符数据** 字符输出流&am…

信道数据传输速率、信号传播速度——参考《天勤计算机网络》

一、缘起题目 二、解析 三、总结 信道数据传输速率和信号传播速度是两个不同的概念。 3.1 信道数据传输速率&#xff08;Channel Data Transfer Rate&#xff09; 指的是在通信系统中&#xff0c;通过信道传输的数据量&#xff0c;通常以 比特率&#xff08;bits per second…

RPA厂商大比拼,哪家才更适合您?

引言&#xff1a;随着数字化时代的到来&#xff0c;自动化已成为推动企业数字化发展的关键举措之一&#xff0c;RPA作为自动化中的重要技术之一&#xff0c;可为企业提供了实现业务流程自动化的强大工具。然而&#xff0c;如何选择适合自己的RPA厂商也是各大企业现在面临的难题…

Use nvidia card in docker

1.确保在宿主机上已经安装了nvidia 显卡的驱动 $ nvidia-smi 2.准备Nvidia-docker的环境 $ distribution$(. /etc/os-release;echo $ID$VERSION_ID) && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/k…

用爬虫代码爬取高音质音频示例

目录 一、准备工作 1、安装Python和相关库 2、确定目标网站和数据结构 二、编写爬虫代码 1、导入库 2、设置代理IP 3、发送HTTP请求并解析HTML页面 4、查找音频文件链接 5、提取音频文件名和下载链接 6、下载音频文件 三、完整代码示例 四、注意事项 1、遵守法律法…

22年上半年下午题

第一大题题目 第一大题解答 第一小问 看加工交互和说明来得出实体的名字。如果不太确定&#xff0c;可以多去看几条数据流来确认答案。仔细一点&#xff0c;这分稳啦。 第二小问 需要对应加工结合说明得出数据存储的名称。 一般可以在后面加上表字或者加上信息表。自拟&…