【Gensim概念】03/3 NLP玩转 word2vec

第三部分 对象函数

八 word2vec对象函数

        该对象本质上包含单词和嵌入之间的映射。训练后,可以直接使用它以各种方式查询这些嵌入。有关示例,请参阅模块级别文档字符串。

类型

KeyedVectors

1) add_lifecycle_event(event_namelog_level=20**event)

        将事件附加到该对象的生命周期事件属性中,还可以选择在log_level记录该事件。

        事件是对象生命周期中的重要时刻,例如“模型创建”、“模型保存”、“模型加载”等。

        Lifecycle_events属性在对象 和操作之间保持不变。它对模型的使用没有影响,但在调试和支持过程中很有用。save()load()

        设置self.lifecycle_events = None以禁用此行为。调用add_lifecycle_event() 不会将事件记录到self.lifecycle_events中。

参数:

  • event_name ( str ) – 事件的名称。可以是任何标签,例如“创建”、“存储”等。

  • 事件字典)–

    要附加到self.lifecycle_events 的键值映射。应该是 JSON 可序列化的,所以保持简单。可以为空。

    此方法会自动将以下键值添加到event,因此您不必指定它们:

    • 日期时间:当前日期和时间

    • gensim:当前的 Gensim 版本

    • python : 当前的Python版本

    • 平台:当前平台

    • 事件:此事件的名称

  • log_level ( int ) – 还以指定的日志级别记录完整的事件字典。设置为 False 则根本不记录。

2)add_null_word()

3)build_vocab(

        corpus_iterable=None

        corpus_file=Noneupdate=False

        progress_per=10000

        keep_raw_vocab=False

        trim_rule=None

        **kwargs)

从一系列句子构建词汇(可以是一次性生成器流)。

参数

  • corpus_iterable ( iterable of list of str ) – 可以只是标记列表的列表,但对于较大的语料库,请考虑直接从磁盘/网络流式传输句子的迭代。有关此类示例,请参阅BrownCorpus,Text8Corpus 或LineSentencemodule 。

  • corpus_file ( str ,可选) – 格式的语料库文件的路径LineSentence。您可以使用此参数而不是句子来提高性能。仅需要传递句子或 corpus_file参数之一(而不是两者)。

  • update ( bool ) – 如果为 true,句子中的新单词将添加到模型的词汇表中。

  • Progress_per ( int ,可选) – 指示在显示/更新进度之前要处理多少个单词。

  • keep_raw_vocab ( bool ,可选) – 如果为 False,则在缩放完成以释放 RAM 后将删除原始词汇。

  • trim_rule (functionoptional) -

    词汇表修剪规则,指定某些单词是否应保留在词汇表中、被修剪掉或使用默认值进行处理(如果字数 < min_count 则丢弃)。可以是 None (将使用 min_count,请查看),或者是接受参数(word、count、min_count)并返回、或 的keep_vocab_item()可调用函数 。该规则(如果给定)仅用于在当前方法调用期间修剪词汇,并且不存储为模型的一部分。gensim.utils.RULE_DISCARDgensim.utils.RULE_KEEPgensim.utils.RULE_DEFAULT

    输入参数有以下几种类型:

    • word (str) - 我们正在检查的单词

    • count (int) - 语料库中单词的频率计数

    • min_count (int) - 最小计数阈值。

  • **kwargs ( object ) – 传播到self.prepare_vocab 的关键字参数。

 4)build_vocab_from_freq(

word_freqkeep_raw_vocab=False

corpus_count=None

trim_rule=None

update=False)

从词频词典中构建词汇表。

参数

  • word_freq ( dict of str int ) ) – 从词汇表中的单词到其频率计数的映射。

  • keep_raw_vocab ( bool ,可选) – 如果为 False,则在缩放完成后删除原始词汇以释放 RAM。

  • corpus_count ( int ,可选) – 即使没有提供语料库,此参数也可以显式设置 corpus_count。

  • 修剪规则函数可选)-

    词汇表修剪规则,指定某些单词是否应保留在词汇表中、被修剪掉或使用默认值进行处理(如果字数 < min_count 则丢弃)。可以是 None (将使用 min_count,请查看),或者是接受参数(word、count、min_count)并返回、或 的keep_vocab_item()可调用函数 。该规则(如果给定)仅用于在当前方法调用期间修剪词汇,并且不存储为模型的一部分。gensim.utils.RULE_DISCARDgensim.utils.RULE_KEEPgensim.utils.RULE_DEFAULT

    输入参数有以下几种类型:

    • word (str) - 我们正在检查的单词

    • count (int) - 语料库中单词的频率计数

    • min_count (int) - 最小计数阈值。

  • update ( bool ,可选) – 如果为 true,则word_freq字典中提供的新单词将被添加到模型的词汇中。

5)create_binary_tree()

创建二叉树( )

使用存储的词汇字数创建二叉霍夫曼树。频繁出现的单词将具有较短的二进制代码。从 内部调用build_vocab()

估计内存(vocab_size =无报告=无

使用当前设置和提供的词汇量估计模型所需的内存。

参数

  • vocab_size ( int ,可选) – 词汇表中唯一标记的数量

  • report ( dict of str int ,可选) – 从模型内存消耗成员的字符串表示形式到其大小(以字节为单位)的字典。

        返回

                从模型内存消耗成员的字符串表示形式到其大小(以字节为单位)的字典。

        返回类型

                (str, int) 的字典

6)get_latest_training_loss()

        获取训练损失的当前值。

        返回

                当前训练损失。

        返回类型

                浮点

7)init_sims(replace=False

        预先计算 L2 标准化向量。已过时。

        如果您需要某个键的单个单位归一化向量,请 get_vector()改为调用: 。word2vec_model.wv.get_vector(key, norm=True)

        要在执行一些非典型带外矢量篡改后刷新规范,请改为调用:meth:`~gensim.models.keyedvectors.KeyedVectors.fill_norms()。

        参数

        Replace ( bool ) – 如果为 True,则忘记原始训练向量并仅保留标准化向量。如果您这样做,您就会丢失信息。

8)init_weights()

将所有投影权重重置为初始(未训练)状态,但保留现有词汇表。

9)classmethodload(*argsrethrow=False**kwargs)

加载以前保存的Word2Vec模型。

也可以看看

save()

保存模型。

参数

fname ( str ) – 保存文件的路径。

退货

已加载模型。

返回类型

Word2Vec

10)make_cum_table(domain=2147483647)

        使用存储的词汇字数创建累积分布表,以便在负采样训练例程中绘制随机单词。

        要绘制单词索引,请选择一个随机整数,直到表中的最大值 (cum_table[-1]),然后找到该整数的排序插入点(就像通过 bisect_left 或 ndarray.searchsorted( )一样)。该插入点是绘制的索引,其按比例等于该槽处的增量。

11)predict_output_word(context_words_listtopn=10)

        获取给定上下文单词的中心单词的概率分布。

        请注意,即使在 SG 模型中,这也会执行 CBOW 式的传播,并且不会像训练中那样对周围的单词进行加权——因此,这只是使用经过训练的模型作为预测器的一种粗略方法。

参数

  • context_words_list ( list of str 和/或 int ) ) – 上下文单词列表,可能是单词本身 (str) 或其在self.wv.vectors (int) 中的索引。

  • topn ( int ,可选) – 返回topn单词及其概率。

        return

                topn长度的(单词,概率)元组列表。

        返回类型

                (str, float) 列表

12)prepare_vocab(

update=False

keep_raw_vocab=False,

 trim_rule=None

min_count=None

sample=None

dry_run=False)

对min_count(丢弃频率较低的单词)和样本(控制频率较高的单词的下采样)应用词汇设置。

使用dry_run=True进行调用只会模拟提供的设置并报告保留词汇的大小、有效语料库长度和估计的内存需求。结果均通过日志记录打印并以字典形式返回。

缩放完成后删除原始词汇以释放 RAM,除非设置了keep_raw_vocab 。

13)prepare_weights(update=False)

        根据最终词汇设置构建表格和模型权重。

14)reset_from(other_model)

        从other_model借用可共享的预构建结构并重置隐藏层权重。

        复制的结构是:

  • 词汇

  • 索引到词映射

  • 累积频率表(用于负采样)

  • 缓存语料库长度

        在同一语料库上并行测试多个模型时非常有用。然而,由于模型共享除向量之外的所有词汇相关结构,因此两个模型都不应该扩展其词汇量(这可能会使另一个模型处于不一致、损坏的状态)。而且,对每个单词“vecattr”的任何更改都会影响这两个模型。

参数

15)other_model ( Word2Vec) – 从中复制内部结构的另一个模型。

16)save(*args**kwargs)

        保存(* args ** kwargs

        保存模型。可以使用 再次加载保存的模型load(),它支持在线训练和获取词汇向量。

        参数

        fname ( str ) – 文件的路径。

17)scan_vocab(

corpus_iterable=None,

 corpus_file=None

progress_per=10000

workers=None

trim_rule=None)

18)score(

sentences

total_sentences=1000000

chunksize=100

queue_factor=2

report_delay=1)

        对一系列句子的对数概率进行评分。这不会以任何方式改变拟合模型(参见train()参考资料)。

        Gensim 目前仅实现了分层 softmax 方案的分数,因此您需要在hs=1和negative=0的情况下运行 word2vec 才能正常工作。

        请注意,您应该指定total_sentences;如果你要求得分超过这个数量的句子,你就会遇到问题,但将值设置得太高是低效的。

        请参阅Matt Taddy 的文章:“通过分布式语言表示反转进行文档分类”和 gensim 演示,了解如何在文档分类中使用此类分数的示例。

参数

  • Sentences ( iterable of list of str ) – Sentences iterable 可以简单地是 token 列表的列表,但对于较大的语料库,请考虑直接从磁盘/网络流式传输句子的 iterable。请参阅BrownCorpus、Text8Corpus 或模块LineSentence中的word2vec此类示例。

  • Total_sentences ( int ,可选) – 句子计数。

  • chunksize ( int ,可选) – 作业的块大小

  • queue_factor ( int ,可选) – 队列大小的乘数(工作人员数量 * queue_factor)。

  • report_delay ( float ,可选) – 报告进度之前等待的秒数。

19 seeded_vector(seed_stringvector_size)

20)

train(corpus_iterable=Nonecorpus_file=Nonetotal_examples=Nonetotal_words=Noneepochs=Nonestart_alpha=Noneend_alpha=Noneword_count=0queue_factor=2report_delay=1.0compute_loss=Falsecallbacks=()**kwargs)

根据句子序列更新模型的神经权重。

注意:

        为了支持从(初始) alpha到min_alpha的线性学习率衰减以及准确的进度百分比记录,必须提供total_examples(句子计数)或total_words(句子中的原始单词计数) 。如果句子与之前提供的语料库相同,则可以简单地使用total_examples=self.corpus_count。build_vocab()

警告

为了避免模型自身进行多次训练的能力出现常见错误,必须提供明确的epochs参数。在常见且推荐的仅调用一次的情况下,您可以设置epochs=self.epochs。train()

参数

  • corpus_iterable ( str 列表的可迭代) –

    corpus_iterable可以是简单的标记列表列表,但对于较大的语料库,请考虑直接从磁盘/网络流式传输句子的迭代,以限制 RAM 使用。请参阅BrownCorpus、Text8Corpus 或模块LineSentence中的word2vec此类示例。另请参阅有关 Python 中的数据流的教程。

  • corpus_file ( str ,可选) – 格式的语料库文件的路径LineSentence。您可以使用此参数而不是句子来提高性能。仅需要传递句子或 corpus_file参数之一(而不是两者)。

  • Total_examples ( int ) – 句子计数。

  • Total_words ( int ) – 句子中原始单词的计数。

  • epochs ( int ) – 语料库的迭代次数(epoch)。

  • start_alpha ( float ,可选) – 初始学习率。如果提供,则替换构造函数中的起始alpha,以调用“train()”。仅当您想要自己管理 alpha 学习率时多次调用train()时才使用(不推荐)。

  • end_alpha ( float ,可选) – 最终学习率。从start_alpha线性下降。如果提供的话,这将替换构造函数中的最终min_alpha,对于这一次对train()的调用。仅当您想要自己管理 alpha 学习率时多次调用train()时才使用(不推荐)。

  • word_count ( int ,可选) – 已训练的单词计数。对于对句子中所有单词进行训练的通常情况,将其设置为 0。

  • queue_factor ( int ,可选) – 队列大小的乘数(工作人员数量 * queue_factor)。

  • report_delay ( float ,可选) – 报告进度之前等待的秒数。

  • compute_loss ( bool ,可选) – 如果为 True,则计算并存储可以使用 检索的损失值 get_latest_training_loss()。

  • callback(可迭代CallbackAny2Vec,可选)- 在训练期间的特定阶段执行的回调序列。

例子

>>> from gensim.models import Word2Vec
>>> sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]]
>>>
>>> model = Word2Vec(min_count=1)
>>> model.build_vocab(sentences)  # prepare the model vocabulary
>>> model.train(sentences, total_examples=model.corpus_count, epochs=model.epochs)  # train word vectors
(1, 30)

21) update_weights()

        复制所有现有权重,并重置新添加词汇的权重。

九、classgensim.models.word2vec.Word2VecTrainables

class  gensim.models.word2vec.Word2Vect

基类:SaveLoad

        现在保留过时的类作为加载兼容性状态捕获。

1) add_lifecycle_event ( event_name , log_level = 20 , **evnt)

        将事件附加到该对象的生命周期事件属性中,还可以选择在log_level记录该事件。

        事件是对象生命周期中的重要时刻,例如“模型创建”、“模型保存”、“模型加载”等。

        Lifecycle_events属性在对象 和操作之间保持不变。它对模型的使用没有影响,但在调试和支持过程中很有用。save()load()

        设置self.lifecycle_events = None以禁用此行为。调用add_lifecycle_event() 不会将事件记录到self.lifecycle_events中。

参数

  • event_name ( str ) – 事件的名称。可以是任何标签,例如“创建”、“存储”等。

  • event字典)–要附加到self.lifecycle_events 的键值映射。应该是 JSON 可序列化的,所以保持简单。可以为空。

    此方法会自动将以下键值添加到event,因此您不必指定它们:

    • 日期时间:当前日期和时间

    • gensim:当前的 Gensim 版本

    • python : 当前的Python版本

    • 平台:当前平台

    • 事件:此事件的名称

  • log_level ( int ) – 还以指定的日志级别记录完整的事件字典。设置为 False 则根本不记录。

类方法加载(fname mmap = None

save()从文件中加载先前保存的对象。

参数

  • fname ( str ) – 包含所需对象的文件的路径。

  • mmap ( str ,可选) – 内存映射选项。如果对象是用单独存储的大型数组保存的,则可以使用mmap='r' 通过 mmap(共享内存)加载这些数组。如果正在加载的文件是压缩的(“.gz”或“.bz2”),则 必须设置“mmap=None”。

也可以看看

save()

将对象保存到文件。

退货

从fname加载的对象。

返回类型

目的

提高

AttributeError – 当调用对象实例而不是类时(这是一个类方法)。

保存(fname_or_handle单独= None sep_limit = 10485760 ignore = freezeset({}) pickle_protocol = 4

将对象保存到文件中。

参数

  • fname_or_handle ( strfile-like ) – 输出文件或已打开的类文件对象的路径。如果对象是文件句柄,则不会执行特殊的数组处理,所有属性将保存到同一个文件中。

  • 单独( strNone列表可选) –

    如果为 None,则自动检测正在存储的对象中的大型 numpy/scipy.sparse 数组,并将它们存储到单独的文件中。这可以防止大对象的内存错误,并且还允许对 大数组进行内存映射,以便在多个进程之间高效加载和共享 RAM 中的大数组。

    如果是 str 列表:将这些属性存储到单独的文件中。在这种情况下,不执行自动尺寸检查。

  • sep_limit ( int ,可选) – 不要单独存储小于此值的数组。以字节为单位。

  • ignore ( fredset of str ,可选) – 根本不应该存储的属性。

  • pickle_protocol ( int ,可选) – pickle 的协议号。

也可以看看

load()

从文件加载对象。

class  gensim.models.word2vec。Word2VecVocab

基地:SaveLoad

现在保留过时的类作为加载兼容性状态捕获。

add_lifecycle_event ( event_name , log_level = 20 , **事件)

将事件附加到该对象的生命周期事件属性中,还可以选择在log_level记录该事件。

事件是对象生命周期中的重要时刻,例如“模型创建”、“模型保存”、“模型加载”等。

Lifecycle_events属性在对象 和操作之间保持不变。它对模型的使用没有影响,但在调试和支持过程中很有用。save()load()

设置self.lifecycle_events = None以禁用此行为。调用add_lifecycle_event() 不会将事件记录到self.lifecycle_events中。

参数

  • event_name ( str ) – 事件的名称。可以是任何标签,例如“创建”、“存储”等。

  • 事件字典)–

    要附加到self.lifecycle_events 的键值映射。应该是 JSON 可序列化的,所以保持简单。可以为空。

    此方法会自动将以下键值添加到event,因此您不必指定它们:

    • 日期时间:当前日期和时间

    • gensim:当前的 Gensim 版本

    • python : 当前的Python版本

    • 平台:当前平台

    • 事件:此事件的名称

  • log_level ( int ) – 还以指定的日志级别记录完整的事件字典。设置为 False 则根本不记录。

类方法加载(fname mmap = None

save()从文件中加载先前保存的对象。

参数

  • fname ( str ) – 包含所需对象的文件的路径。

  • mmap ( str ,可选) – 内存映射选项。如果对象是用单独存储的大型数组保存的,则可以使用mmap='r' 通过 mmap(共享内存)加载这些数组。如果正在加载的文件是压缩的(“.gz”或“.bz2”),则 必须设置“mmap=None”。

也可以看看

save()

将对象保存到文件。

退货

从fname加载的对象。

返回类型

目的

提高

AttributeError – 当调用对象实例而不是类时(这是一个类方法)。

save(fname_or_handle单独= None sep_limit = 10485760 ignore = freezeset({}) pickle_protocol = 4

将对象保存到文件中。

参数

  • fname_or_handle ( strfile-like ) – 输出文件或已打开的类文件对象的路径。如果对象是文件句柄,则不会执行特殊的数组处理,所有属性将保存到同一个文件中。

  • 单独( strNone列表可选) –

    如果为 None,则自动检测正在存储的对象中的大型 numpy/scipy.sparse 数组,并将它们存储到单独的文件中。这可以防止大对象的内存错误,并且还允许对 大数组进行内存映射,以便在多个进程之间高效加载和共享 RAM 中的大数组。

    如果是 str 列表:将这些属性存储到单独的文件中。在这种情况下,不执行自动尺寸检查。

  • sep_limit ( int ,可选) – 不要单独存储小于此值的数组。以字节为单位。

  • ignore ( fredset of str ,可选) – 根本不应该存储的属性。

  • pickle_protocol ( int ,可选) – pickle 的协议号。

也可以看看

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119694.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

@AutoConfigurationPackage注解类

包名package org.springframework.boot.autoconfigure 方法 String[] basePackages() 向AutoConfigurationPackages中注册的基本包&#xff0c;使用basePackageClasses作为基于字符串的包的类型安全替代方案 Class<?>[] basePackageClasses() 键入basePackage…

APP破解去广告

1.修改图标和名称 名称直接改 找到图标在进去把他替换掉 2.修改app包名实现分身 修改包名实现app分身_Tian翊的博客-CSDN博客 3.修改资源去广告 安卓逆向006之修改APK资源去广告_修改安装包去除app内广告-CSDN博客 打开模拟器后在cmd命令行输入adb devices连接上 在模拟器中…

每日一练——返回链表的中间结点

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”。…

Dockerfile文件自动化生成R4L镜像

Dockerfile文件自动化生成R4L镜像的步骤 1、安装Docker&#xff1a;2、使用Dockerfile一键生成镜像&#xff1a;3、查看生成的Docker镜像&#xff1a;4、删除Docker镜像&#xff1a;5、生成Docker容器&#xff1a;6、查看容器7、删除容器 1、安装Docker&#xff1a; curl -fsS…

sqoop和flume简单安装配置使用

1. Sqoop 1.1 Sqoop介绍 Sqoop 是一个在结构化数据和 Hadoop 之间进行批量数据迁移的工具 结构化数据可以是MySQL、Oracle等关系型数据库 把关系型数据库的数据导入到 Hadoop 与其相关的系统 把数据从 Hadoop 系统里抽取并导出到关系型数据库里 底层用 MapReduce 实现数据 …

如何巧妙告知家长成绩分数

如何让学生和家长们查询期中考试成绩,一直是让许多老师都头疼不已的问题。今天我就来交给大家怎么解决这个问题。 我们先了解一下成绩查询系统是什么。在互联网高度发达的今天&#xff0c;成绩查询系统已经不再是学校的专属&#xff0c;而是可以通过网络平台进行操作的一种工具…

LVS负载均衡(LVS简介、三种工作模式、十种调度算法)

LVS简介 LVS&#xff08;Linux Virtual Server&#xff09;是一种基于Linux内核的高可用性负载均衡软件。它通过将客户端请求分发到多个后端真实服务器&#xff0c;提高系统性能和可靠性。LVS支持多种调度算法&#xff0c;如轮询、最少连接、源地址哈希等&#xff0c;用于决定…

利用MATLAB创建栅格地图(代码可复制)

先做一个声明&#xff1a;文章是由我的个人公众号中的推送直接复制粘贴而来&#xff0c;因此对智能优化算法感兴趣的朋友&#xff0c;可关注我的个人公众号&#xff1a;启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法&#xff0c;经典的&#xff0c;或者是近几年…

解决msvcp120.dll丢失的问题的5个方法,修复系统dll问题

在使用计算机的过程中&#xff0c;我们经常会遇到各种各样的动态链接库&#xff08;DLL&#xff09;文件。其中之一就是“msvcp120.dll丢失”。这个错误通常会导致某些应用程序无法正常运行。为了解决这个问题&#xff0c;我们需要找到合适的方法来修复丢失的msvcp120.dll文件。…

SpringSecurity分布式安全框架

Spring Security是一个基于Spring框架的安全框架&#xff0c;它提供了全面的安全解决方案&#xff0c;包括用户认证和用户授权等Web应用安全性问题。Spring Security可以轻松扩展以满足自定义需求&#xff0c;它的真正强大之处在于它可以轻松扩展以满足自定义要求。 对于分布式…

JavaWeb——IDEA操作:Project最终新建module

在project中创建新的module&#xff1a; 创建一个新的module很容易&#xff0c;但是它可能连接不上Tomcat&#xff0c;因此需要修改一些配置&#xff1a; 将以下地址修改为新module的地址

PROFINET通信介绍

S7-1200和汇川变频器的PROFINET通信应用&#xff0c;请参考下面文章链接&#xff1a; PN通信组态(汇川变频器和S7-1200PN通信)-CSDN博客文章浏览阅读1.2k次。ABB变频器的PN通信相关设置&#xff0c;请参看下面的文章链接博途PLC和ABB变频器PN通讯详解_abb 变频器 pn通信_RXXW_…

【JavaEE初阶】 线程安全的集合类

文章目录 &#x1f340;前言&#x1f332;多线程环境使用 ArrayList&#x1f6a9;自己使用同步机制 (synchronized 或者 ReentrantLock)&#x1f6a9;Collections.synchronizedList(new ArrayList);&#x1f6a9;使用 CopyOnWriteArrayList &#x1f38d;多线程环境使用队列&am…

echarts-进度条

echarts-进度条 option {title: {text:"xxxx统计",left: 1%,top: 0%,textStyle: {color: "#2E3033",fontSize:18,},},tooltip: {axisPointer: {type: "shadow",},},grid: {top: 9%,left: "12%",right:"22%",bottom:"0…

react笔记基础部分(组件生命周期路由)

注意点&#xff1a; class是一个关键字&#xff0c; 类。 所以react 写class, 用classname &#xff0c;会自动编译替换class 点击方法&#xff1a; <button onClick {this.sendData}>给父元素传值</button>常用的插件&#xff1a; 需要引入才能使用的&#xf…

如何使用vim粘贴鼠标复制的内容

文章目录 一、使用步骤1.找到要编辑的配置文件2.找到目标文件3.再回到vim编辑器 一、使用步骤 1.找到要编辑的配置文件 用sudo vim /etc/apt/sources.list编辑软件源配置文件 sudo vim /etc/apt/sources.listvim 在默认的情况下当鼠标选中的时候进入的 Visual 模式&#xff…

GitLab升级16.5.0后访问提示502

系统是兼容CentOS8的TencentOS3.1 GitLab原来的版本是16.4.1 使用yum升级时发现GitLab有新版本,决定升级。 升级过程无异常,出现升级成功的提示。 可是意外的时,访问站点时提示502. GitLab比较吃资源,启动的服务较多。之前也有等会就正常的情况。 这次没那么幸运,一…

Go语言入门心法(十四): Go操作Redis实战

Go语言入门心法(一): 基础语法 Go语言入门心法(二): 结构体 Go语言入门心法(三): 接口 Go语言入门心法(四): 异常体系 Go语言入门心法(五): 函数 Go语言入门心法(六): HTTP面向客户端|服务端编程 Go语言入门心法(七): 并发与通道 Go语言入门心法(八): mysql驱动安装报错o…

【ARM Cortex-M 系列 4 番外篇 -- 常用 benchmark 介绍】

文章目录 1.1 CPU 性能测试 MIPS 计算1.1.1 Cortex-M7 CPI 1.2 benchmark 小节1.3.1 Geekbenck 介绍 1.3 编译参数配置 1.1 CPU 性能测试 MIPS 计算 每秒百万指令数 (MIPS)&#xff1a;在数据压缩测试中&#xff0c;MIPS 每秒测量一次 CPU 执行的低级指令的数量。越高越好&…

D71X-16Q手柄蝶阀型号解析

D71X-16Q型号字母含义解析 D71X-16Q是德特森阀门常用的手柄蝶阀型号字母分别代表的意思是: D——代表阀门类型《蝶阀》 7——代表连接方式《对夹》 1——代表结构形式《中线》 X——代表阀座材质《橡胶》 -代表分隔键 16——代表公称压力《1.6MPA》 Q——代表阀体材料《…