【Gensim概念】03/3 NLP玩转 word2vec

第三部分 对象函数

八 word2vec对象函数

        该对象本质上包含单词和嵌入之间的映射。训练后,可以直接使用它以各种方式查询这些嵌入。有关示例,请参阅模块级别文档字符串。

类型

KeyedVectors

1) add_lifecycle_event(event_namelog_level=20**event)

        将事件附加到该对象的生命周期事件属性中,还可以选择在log_level记录该事件。

        事件是对象生命周期中的重要时刻,例如“模型创建”、“模型保存”、“模型加载”等。

        Lifecycle_events属性在对象 和操作之间保持不变。它对模型的使用没有影响,但在调试和支持过程中很有用。save()load()

        设置self.lifecycle_events = None以禁用此行为。调用add_lifecycle_event() 不会将事件记录到self.lifecycle_events中。

参数:

  • event_name ( str ) – 事件的名称。可以是任何标签,例如“创建”、“存储”等。

  • 事件字典)–

    要附加到self.lifecycle_events 的键值映射。应该是 JSON 可序列化的,所以保持简单。可以为空。

    此方法会自动将以下键值添加到event,因此您不必指定它们:

    • 日期时间:当前日期和时间

    • gensim:当前的 Gensim 版本

    • python : 当前的Python版本

    • 平台:当前平台

    • 事件:此事件的名称

  • log_level ( int ) – 还以指定的日志级别记录完整的事件字典。设置为 False 则根本不记录。

2)add_null_word()

3)build_vocab(

        corpus_iterable=None

        corpus_file=Noneupdate=False

        progress_per=10000

        keep_raw_vocab=False

        trim_rule=None

        **kwargs)

从一系列句子构建词汇(可以是一次性生成器流)。

参数

  • corpus_iterable ( iterable of list of str ) – 可以只是标记列表的列表,但对于较大的语料库,请考虑直接从磁盘/网络流式传输句子的迭代。有关此类示例,请参阅BrownCorpus,Text8Corpus 或LineSentencemodule 。

  • corpus_file ( str ,可选) – 格式的语料库文件的路径LineSentence。您可以使用此参数而不是句子来提高性能。仅需要传递句子或 corpus_file参数之一(而不是两者)。

  • update ( bool ) – 如果为 true,句子中的新单词将添加到模型的词汇表中。

  • Progress_per ( int ,可选) – 指示在显示/更新进度之前要处理多少个单词。

  • keep_raw_vocab ( bool ,可选) – 如果为 False,则在缩放完成以释放 RAM 后将删除原始词汇。

  • trim_rule (functionoptional) -

    词汇表修剪规则,指定某些单词是否应保留在词汇表中、被修剪掉或使用默认值进行处理(如果字数 < min_count 则丢弃)。可以是 None (将使用 min_count,请查看),或者是接受参数(word、count、min_count)并返回、或 的keep_vocab_item()可调用函数 。该规则(如果给定)仅用于在当前方法调用期间修剪词汇,并且不存储为模型的一部分。gensim.utils.RULE_DISCARDgensim.utils.RULE_KEEPgensim.utils.RULE_DEFAULT

    输入参数有以下几种类型:

    • word (str) - 我们正在检查的单词

    • count (int) - 语料库中单词的频率计数

    • min_count (int) - 最小计数阈值。

  • **kwargs ( object ) – 传播到self.prepare_vocab 的关键字参数。

 4)build_vocab_from_freq(

word_freqkeep_raw_vocab=False

corpus_count=None

trim_rule=None

update=False)

从词频词典中构建词汇表。

参数

  • word_freq ( dict of str int ) ) – 从词汇表中的单词到其频率计数的映射。

  • keep_raw_vocab ( bool ,可选) – 如果为 False,则在缩放完成后删除原始词汇以释放 RAM。

  • corpus_count ( int ,可选) – 即使没有提供语料库,此参数也可以显式设置 corpus_count。

  • 修剪规则函数可选)-

    词汇表修剪规则,指定某些单词是否应保留在词汇表中、被修剪掉或使用默认值进行处理(如果字数 < min_count 则丢弃)。可以是 None (将使用 min_count,请查看),或者是接受参数(word、count、min_count)并返回、或 的keep_vocab_item()可调用函数 。该规则(如果给定)仅用于在当前方法调用期间修剪词汇,并且不存储为模型的一部分。gensim.utils.RULE_DISCARDgensim.utils.RULE_KEEPgensim.utils.RULE_DEFAULT

    输入参数有以下几种类型:

    • word (str) - 我们正在检查的单词

    • count (int) - 语料库中单词的频率计数

    • min_count (int) - 最小计数阈值。

  • update ( bool ,可选) – 如果为 true,则word_freq字典中提供的新单词将被添加到模型的词汇中。

5)create_binary_tree()

创建二叉树( )

使用存储的词汇字数创建二叉霍夫曼树。频繁出现的单词将具有较短的二进制代码。从 内部调用build_vocab()

估计内存(vocab_size =无报告=无

使用当前设置和提供的词汇量估计模型所需的内存。

参数

  • vocab_size ( int ,可选) – 词汇表中唯一标记的数量

  • report ( dict of str int ,可选) – 从模型内存消耗成员的字符串表示形式到其大小(以字节为单位)的字典。

        返回

                从模型内存消耗成员的字符串表示形式到其大小(以字节为单位)的字典。

        返回类型

                (str, int) 的字典

6)get_latest_training_loss()

        获取训练损失的当前值。

        返回

                当前训练损失。

        返回类型

                浮点

7)init_sims(replace=False

        预先计算 L2 标准化向量。已过时。

        如果您需要某个键的单个单位归一化向量,请 get_vector()改为调用: 。word2vec_model.wv.get_vector(key, norm=True)

        要在执行一些非典型带外矢量篡改后刷新规范,请改为调用:meth:`~gensim.models.keyedvectors.KeyedVectors.fill_norms()。

        参数

        Replace ( bool ) – 如果为 True,则忘记原始训练向量并仅保留标准化向量。如果您这样做,您就会丢失信息。

8)init_weights()

将所有投影权重重置为初始(未训练)状态,但保留现有词汇表。

9)classmethodload(*argsrethrow=False**kwargs)

加载以前保存的Word2Vec模型。

也可以看看

save()

保存模型。

参数

fname ( str ) – 保存文件的路径。

退货

已加载模型。

返回类型

Word2Vec

10)make_cum_table(domain=2147483647)

        使用存储的词汇字数创建累积分布表,以便在负采样训练例程中绘制随机单词。

        要绘制单词索引,请选择一个随机整数,直到表中的最大值 (cum_table[-1]),然后找到该整数的排序插入点(就像通过 bisect_left 或 ndarray.searchsorted( )一样)。该插入点是绘制的索引,其按比例等于该槽处的增量。

11)predict_output_word(context_words_listtopn=10)

        获取给定上下文单词的中心单词的概率分布。

        请注意,即使在 SG 模型中,这也会执行 CBOW 式的传播,并且不会像训练中那样对周围的单词进行加权——因此,这只是使用经过训练的模型作为预测器的一种粗略方法。

参数

  • context_words_list ( list of str 和/或 int ) ) – 上下文单词列表,可能是单词本身 (str) 或其在self.wv.vectors (int) 中的索引。

  • topn ( int ,可选) – 返回topn单词及其概率。

        return

                topn长度的(单词,概率)元组列表。

        返回类型

                (str, float) 列表

12)prepare_vocab(

update=False

keep_raw_vocab=False,

 trim_rule=None

min_count=None

sample=None

dry_run=False)

对min_count(丢弃频率较低的单词)和样本(控制频率较高的单词的下采样)应用词汇设置。

使用dry_run=True进行调用只会模拟提供的设置并报告保留词汇的大小、有效语料库长度和估计的内存需求。结果均通过日志记录打印并以字典形式返回。

缩放完成后删除原始词汇以释放 RAM,除非设置了keep_raw_vocab 。

13)prepare_weights(update=False)

        根据最终词汇设置构建表格和模型权重。

14)reset_from(other_model)

        从other_model借用可共享的预构建结构并重置隐藏层权重。

        复制的结构是:

  • 词汇

  • 索引到词映射

  • 累积频率表(用于负采样)

  • 缓存语料库长度

        在同一语料库上并行测试多个模型时非常有用。然而,由于模型共享除向量之外的所有词汇相关结构,因此两个模型都不应该扩展其词汇量(这可能会使另一个模型处于不一致、损坏的状态)。而且,对每个单词“vecattr”的任何更改都会影响这两个模型。

参数

15)other_model ( Word2Vec) – 从中复制内部结构的另一个模型。

16)save(*args**kwargs)

        保存(* args ** kwargs

        保存模型。可以使用 再次加载保存的模型load(),它支持在线训练和获取词汇向量。

        参数

        fname ( str ) – 文件的路径。

17)scan_vocab(

corpus_iterable=None,

 corpus_file=None

progress_per=10000

workers=None

trim_rule=None)

18)score(

sentences

total_sentences=1000000

chunksize=100

queue_factor=2

report_delay=1)

        对一系列句子的对数概率进行评分。这不会以任何方式改变拟合模型(参见train()参考资料)。

        Gensim 目前仅实现了分层 softmax 方案的分数,因此您需要在hs=1和negative=0的情况下运行 word2vec 才能正常工作。

        请注意,您应该指定total_sentences;如果你要求得分超过这个数量的句子,你就会遇到问题,但将值设置得太高是低效的。

        请参阅Matt Taddy 的文章:“通过分布式语言表示反转进行文档分类”和 gensim 演示,了解如何在文档分类中使用此类分数的示例。

参数

  • Sentences ( iterable of list of str ) – Sentences iterable 可以简单地是 token 列表的列表,但对于较大的语料库,请考虑直接从磁盘/网络流式传输句子的 iterable。请参阅BrownCorpus、Text8Corpus 或模块LineSentence中的word2vec此类示例。

  • Total_sentences ( int ,可选) – 句子计数。

  • chunksize ( int ,可选) – 作业的块大小

  • queue_factor ( int ,可选) – 队列大小的乘数(工作人员数量 * queue_factor)。

  • report_delay ( float ,可选) – 报告进度之前等待的秒数。

19 seeded_vector(seed_stringvector_size)

20)

train(corpus_iterable=Nonecorpus_file=Nonetotal_examples=Nonetotal_words=Noneepochs=Nonestart_alpha=Noneend_alpha=Noneword_count=0queue_factor=2report_delay=1.0compute_loss=Falsecallbacks=()**kwargs)

根据句子序列更新模型的神经权重。

注意:

        为了支持从(初始) alpha到min_alpha的线性学习率衰减以及准确的进度百分比记录,必须提供total_examples(句子计数)或total_words(句子中的原始单词计数) 。如果句子与之前提供的语料库相同,则可以简单地使用total_examples=self.corpus_count。build_vocab()

警告

为了避免模型自身进行多次训练的能力出现常见错误,必须提供明确的epochs参数。在常见且推荐的仅调用一次的情况下,您可以设置epochs=self.epochs。train()

参数

  • corpus_iterable ( str 列表的可迭代) –

    corpus_iterable可以是简单的标记列表列表,但对于较大的语料库,请考虑直接从磁盘/网络流式传输句子的迭代,以限制 RAM 使用。请参阅BrownCorpus、Text8Corpus 或模块LineSentence中的word2vec此类示例。另请参阅有关 Python 中的数据流的教程。

  • corpus_file ( str ,可选) – 格式的语料库文件的路径LineSentence。您可以使用此参数而不是句子来提高性能。仅需要传递句子或 corpus_file参数之一(而不是两者)。

  • Total_examples ( int ) – 句子计数。

  • Total_words ( int ) – 句子中原始单词的计数。

  • epochs ( int ) – 语料库的迭代次数(epoch)。

  • start_alpha ( float ,可选) – 初始学习率。如果提供,则替换构造函数中的起始alpha,以调用“train()”。仅当您想要自己管理 alpha 学习率时多次调用train()时才使用(不推荐)。

  • end_alpha ( float ,可选) – 最终学习率。从start_alpha线性下降。如果提供的话,这将替换构造函数中的最终min_alpha,对于这一次对train()的调用。仅当您想要自己管理 alpha 学习率时多次调用train()时才使用(不推荐)。

  • word_count ( int ,可选) – 已训练的单词计数。对于对句子中所有单词进行训练的通常情况,将其设置为 0。

  • queue_factor ( int ,可选) – 队列大小的乘数(工作人员数量 * queue_factor)。

  • report_delay ( float ,可选) – 报告进度之前等待的秒数。

  • compute_loss ( bool ,可选) – 如果为 True,则计算并存储可以使用 检索的损失值 get_latest_training_loss()。

  • callback(可迭代CallbackAny2Vec,可选)- 在训练期间的特定阶段执行的回调序列。

例子

>>> from gensim.models import Word2Vec
>>> sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]]
>>>
>>> model = Word2Vec(min_count=1)
>>> model.build_vocab(sentences)  # prepare the model vocabulary
>>> model.train(sentences, total_examples=model.corpus_count, epochs=model.epochs)  # train word vectors
(1, 30)

21) update_weights()

        复制所有现有权重,并重置新添加词汇的权重。

九、classgensim.models.word2vec.Word2VecTrainables

class  gensim.models.word2vec.Word2Vect

基类:SaveLoad

        现在保留过时的类作为加载兼容性状态捕获。

1) add_lifecycle_event ( event_name , log_level = 20 , **evnt)

        将事件附加到该对象的生命周期事件属性中,还可以选择在log_level记录该事件。

        事件是对象生命周期中的重要时刻,例如“模型创建”、“模型保存”、“模型加载”等。

        Lifecycle_events属性在对象 和操作之间保持不变。它对模型的使用没有影响,但在调试和支持过程中很有用。save()load()

        设置self.lifecycle_events = None以禁用此行为。调用add_lifecycle_event() 不会将事件记录到self.lifecycle_events中。

参数

  • event_name ( str ) – 事件的名称。可以是任何标签,例如“创建”、“存储”等。

  • event字典)–要附加到self.lifecycle_events 的键值映射。应该是 JSON 可序列化的,所以保持简单。可以为空。

    此方法会自动将以下键值添加到event,因此您不必指定它们:

    • 日期时间:当前日期和时间

    • gensim:当前的 Gensim 版本

    • python : 当前的Python版本

    • 平台:当前平台

    • 事件:此事件的名称

  • log_level ( int ) – 还以指定的日志级别记录完整的事件字典。设置为 False 则根本不记录。

类方法加载(fname mmap = None

save()从文件中加载先前保存的对象。

参数

  • fname ( str ) – 包含所需对象的文件的路径。

  • mmap ( str ,可选) – 内存映射选项。如果对象是用单独存储的大型数组保存的,则可以使用mmap='r' 通过 mmap(共享内存)加载这些数组。如果正在加载的文件是压缩的(“.gz”或“.bz2”),则 必须设置“mmap=None”。

也可以看看

save()

将对象保存到文件。

退货

从fname加载的对象。

返回类型

目的

提高

AttributeError – 当调用对象实例而不是类时(这是一个类方法)。

保存(fname_or_handle单独= None sep_limit = 10485760 ignore = freezeset({}) pickle_protocol = 4

将对象保存到文件中。

参数

  • fname_or_handle ( strfile-like ) – 输出文件或已打开的类文件对象的路径。如果对象是文件句柄,则不会执行特殊的数组处理,所有属性将保存到同一个文件中。

  • 单独( strNone列表可选) –

    如果为 None,则自动检测正在存储的对象中的大型 numpy/scipy.sparse 数组,并将它们存储到单独的文件中。这可以防止大对象的内存错误,并且还允许对 大数组进行内存映射,以便在多个进程之间高效加载和共享 RAM 中的大数组。

    如果是 str 列表:将这些属性存储到单独的文件中。在这种情况下,不执行自动尺寸检查。

  • sep_limit ( int ,可选) – 不要单独存储小于此值的数组。以字节为单位。

  • ignore ( fredset of str ,可选) – 根本不应该存储的属性。

  • pickle_protocol ( int ,可选) – pickle 的协议号。

也可以看看

load()

从文件加载对象。

class  gensim.models.word2vec。Word2VecVocab

基地:SaveLoad

现在保留过时的类作为加载兼容性状态捕获。

add_lifecycle_event ( event_name , log_level = 20 , **事件)

将事件附加到该对象的生命周期事件属性中,还可以选择在log_level记录该事件。

事件是对象生命周期中的重要时刻,例如“模型创建”、“模型保存”、“模型加载”等。

Lifecycle_events属性在对象 和操作之间保持不变。它对模型的使用没有影响,但在调试和支持过程中很有用。save()load()

设置self.lifecycle_events = None以禁用此行为。调用add_lifecycle_event() 不会将事件记录到self.lifecycle_events中。

参数

  • event_name ( str ) – 事件的名称。可以是任何标签,例如“创建”、“存储”等。

  • 事件字典)–

    要附加到self.lifecycle_events 的键值映射。应该是 JSON 可序列化的,所以保持简单。可以为空。

    此方法会自动将以下键值添加到event,因此您不必指定它们:

    • 日期时间:当前日期和时间

    • gensim:当前的 Gensim 版本

    • python : 当前的Python版本

    • 平台:当前平台

    • 事件:此事件的名称

  • log_level ( int ) – 还以指定的日志级别记录完整的事件字典。设置为 False 则根本不记录。

类方法加载(fname mmap = None

save()从文件中加载先前保存的对象。

参数

  • fname ( str ) – 包含所需对象的文件的路径。

  • mmap ( str ,可选) – 内存映射选项。如果对象是用单独存储的大型数组保存的,则可以使用mmap='r' 通过 mmap(共享内存)加载这些数组。如果正在加载的文件是压缩的(“.gz”或“.bz2”),则 必须设置“mmap=None”。

也可以看看

save()

将对象保存到文件。

退货

从fname加载的对象。

返回类型

目的

提高

AttributeError – 当调用对象实例而不是类时(这是一个类方法)。

save(fname_or_handle单独= None sep_limit = 10485760 ignore = freezeset({}) pickle_protocol = 4

将对象保存到文件中。

参数

  • fname_or_handle ( strfile-like ) – 输出文件或已打开的类文件对象的路径。如果对象是文件句柄,则不会执行特殊的数组处理,所有属性将保存到同一个文件中。

  • 单独( strNone列表可选) –

    如果为 None,则自动检测正在存储的对象中的大型 numpy/scipy.sparse 数组,并将它们存储到单独的文件中。这可以防止大对象的内存错误,并且还允许对 大数组进行内存映射,以便在多个进程之间高效加载和共享 RAM 中的大数组。

    如果是 str 列表:将这些属性存储到单独的文件中。在这种情况下,不执行自动尺寸检查。

  • sep_limit ( int ,可选) – 不要单独存储小于此值的数组。以字节为单位。

  • ignore ( fredset of str ,可选) – 根本不应该存储的属性。

  • pickle_protocol ( int ,可选) – pickle 的协议号。

也可以看看

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119694.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

@AutoConfigurationPackage注解类

包名package org.springframework.boot.autoconfigure 方法 String[] basePackages() 向AutoConfigurationPackages中注册的基本包&#xff0c;使用basePackageClasses作为基于字符串的包的类型安全替代方案 Class<?>[] basePackageClasses() 键入basePackage…

APP破解去广告

1.修改图标和名称 名称直接改 找到图标在进去把他替换掉 2.修改app包名实现分身 修改包名实现app分身_Tian翊的博客-CSDN博客 3.修改资源去广告 安卓逆向006之修改APK资源去广告_修改安装包去除app内广告-CSDN博客 打开模拟器后在cmd命令行输入adb devices连接上 在模拟器中…

【多线程】探索Java中的多线程编程

标题&#xff1a;探索Java中的多线程编程 摘要&#xff1a; Java是一种广泛使用的编程语言&#xff0c;具有强大的多线程编程能力。本文将深入探讨Java中的多线程编程&#xff0c;包括线程的创建、同步与互斥、线程池的使用以及常见的多线程编程模式。通过示例代码和详细解释&…

每日一练——返回链表的中间结点

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”。…

【单元测试】--维护和改进单元测试

一、持续维护单元测试 持续维护单元测试是确保它们继续有效的关键。以下是一些方法来保持单元测试的可维护性&#xff1a; 集成单元测试到持续集成流程&#xff1a;将单元测试包括在持续集成&#xff08;CI&#xff09;流程中&#xff0c;确保它们在每次代码更改后都自动运行…

Dockerfile文件自动化生成R4L镜像

Dockerfile文件自动化生成R4L镜像的步骤 1、安装Docker&#xff1a;2、使用Dockerfile一键生成镜像&#xff1a;3、查看生成的Docker镜像&#xff1a;4、删除Docker镜像&#xff1a;5、生成Docker容器&#xff1a;6、查看容器7、删除容器 1、安装Docker&#xff1a; curl -fsS…

sqoop和flume简单安装配置使用

1. Sqoop 1.1 Sqoop介绍 Sqoop 是一个在结构化数据和 Hadoop 之间进行批量数据迁移的工具 结构化数据可以是MySQL、Oracle等关系型数据库 把关系型数据库的数据导入到 Hadoop 与其相关的系统 把数据从 Hadoop 系统里抽取并导出到关系型数据库里 底层用 MapReduce 实现数据 …

如何巧妙告知家长成绩分数

如何让学生和家长们查询期中考试成绩,一直是让许多老师都头疼不已的问题。今天我就来交给大家怎么解决这个问题。 我们先了解一下成绩查询系统是什么。在互联网高度发达的今天&#xff0c;成绩查询系统已经不再是学校的专属&#xff0c;而是可以通过网络平台进行操作的一种工具…

LVS负载均衡(LVS简介、三种工作模式、十种调度算法)

LVS简介 LVS&#xff08;Linux Virtual Server&#xff09;是一种基于Linux内核的高可用性负载均衡软件。它通过将客户端请求分发到多个后端真实服务器&#xff0c;提高系统性能和可靠性。LVS支持多种调度算法&#xff0c;如轮询、最少连接、源地址哈希等&#xff0c;用于决定…

利用MATLAB创建栅格地图(代码可复制)

先做一个声明&#xff1a;文章是由我的个人公众号中的推送直接复制粘贴而来&#xff0c;因此对智能优化算法感兴趣的朋友&#xff0c;可关注我的个人公众号&#xff1a;启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法&#xff0c;经典的&#xff0c;或者是近几年…

解决msvcp120.dll丢失的问题的5个方法,修复系统dll问题

在使用计算机的过程中&#xff0c;我们经常会遇到各种各样的动态链接库&#xff08;DLL&#xff09;文件。其中之一就是“msvcp120.dll丢失”。这个错误通常会导致某些应用程序无法正常运行。为了解决这个问题&#xff0c;我们需要找到合适的方法来修复丢失的msvcp120.dll文件。…

MVCC 过程中会加锁吗?

MVCC 机制&#xff0c;全称&#xff08;Multi-Version Concurrency Control&#xff09;多版本并发控制&#xff0c;是确保 在高并发下&#xff0c; 多个事务读取数据时不加锁也可以多次读取相同的值。 MVCC 在读已提交&#xff08;READ COMMITTED&#xff09;、可重复读&…

损失函数和评估函数

损失函数和目标函数定义 损失函数是用于衡量模型在训练过程中预测结果与实际结果之间的差异的函数。它通过计算模型的预测值与实际值之间的距离或差异来 quantitatively 表示模型的性能好坏。损失函数通常被用作优化算法(如梯度下降)的目标函数,通过最小化损失函数来调整模…

汽车发动机电机右盖设计

摘要 随着我国微型电子技术和社会经济的发展&#xff0c;目前行业内为满足客户需求出现了大量的电器设备&#xff0c;而大多数的电气设备的重要组成中都有电机&#xff0c;并且电机端盖成为电机研发人员重点关注和研究的对象&#xff0c;逐渐成为电机的重要组成部分&#xff0c…

Scala【集合常用方法和函数操作(下)】

Fold、FoldLeft 和 FoldRight object Test03_Fold {def main(args: Array[String]): Unit {// 称作集合外的参数val list List(1,2,3,4)// fold的底层仍然是调用的 foldLeft// 第一个参数是一个值(称作集合内的参数&#xff0c;必须和集合外的参数类型一致)// 第二个参数是一…

linux信号驱动IO(高级字符设备四)

一、linux信号驱动IO介绍 信号驱动 IO 不需要应用程序查询设备的状态&#xff0c;一旦设备准备就绪&#xff0c;会触发SIGIO信号&#xff0c;进而调用注册的处理函数。 1.1、linux信号驱动IO应用层 如果要实现信号驱动 IO&#xff0c;需要应用程序和驱动程序配合&#xff0c;应…

SpringSecurity分布式安全框架

Spring Security是一个基于Spring框架的安全框架&#xff0c;它提供了全面的安全解决方案&#xff0c;包括用户认证和用户授权等Web应用安全性问题。Spring Security可以轻松扩展以满足自定义需求&#xff0c;它的真正强大之处在于它可以轻松扩展以满足自定义要求。 对于分布式…

JavaWeb——IDEA操作:Project最终新建module

在project中创建新的module&#xff1a; 创建一个新的module很容易&#xff0c;但是它可能连接不上Tomcat&#xff0c;因此需要修改一些配置&#xff1a; 将以下地址修改为新module的地址

PROFINET通信介绍

S7-1200和汇川变频器的PROFINET通信应用&#xff0c;请参考下面文章链接&#xff1a; PN通信组态(汇川变频器和S7-1200PN通信)-CSDN博客文章浏览阅读1.2k次。ABB变频器的PN通信相关设置&#xff0c;请参看下面的文章链接博途PLC和ABB变频器PN通讯详解_abb 变频器 pn通信_RXXW_…

【JavaEE初阶】 线程安全的集合类

文章目录 &#x1f340;前言&#x1f332;多线程环境使用 ArrayList&#x1f6a9;自己使用同步机制 (synchronized 或者 ReentrantLock)&#x1f6a9;Collections.synchronizedList(new ArrayList);&#x1f6a9;使用 CopyOnWriteArrayList &#x1f38d;多线程环境使用队列&am…