【深度学习实验】循环神经网络(五):基于GRU的语言模型训练(包括自定义门控循环单元GRU)

文章目录

  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
    • 2. 库版本介绍
  • 三、实验内容
    • (一)自定义门控循环单元(GRU,Gated Recurrent Unit)
      • 1. get_params
      • 2. init_gru_state
      • 3. gru
    • (二)创建模型
      • 0. 超参数
      • 1. 使用上述手动实现的GRU函数
      • 2. 调用Pytorch库的GRU类
    • (三)基于GRU的语言模型训练
      • 1. RNNModel类
      • 2. 训练、测试及其余辅助函数
      • 3. 主函数
        • a. 训练
        • b. 测试结果
      • 4. 代码整合

  经验是智慧之父,记忆是智慧之母。
——谚语

一、实验介绍

  • 基于门控的循环神经网络(Gated RNN)
    • 门控循环单元(GRU)
      • 门控循环单元(GRU)具有比传统循环神经网络更少的门控单元,因此参数更少,计算效率更高。GRU通过重置门更新门来控制信息的流动,从而改善了传统循环神经网络中的长期依赖问题。
    • 长短期记忆网络(LSTM)
      • 长短期记忆网络(LSTM)是另一种常用的门控循环神经网络结构。LSTM引入了记忆单元输入门输出门以及遗忘门等门控机制,通过这些门控机制可以选择性地记忆、遗忘和输出信息,有效地处理长期依赖和梯度问题。
  • GRU示意图:
    GRU 模块图示

二、实验环境

  本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

(一)自定义门控循环单元(GRU,Gated Recurrent Unit)

1. get_params

def get_params(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_sizedef normal(inputs, hiddens):ctx = deviceparam = torch.rand((inputs, hiddens))param.to(ctx)return paramdef three():return (normal(num_inputs, num_hiddens),normal(num_hiddens, num_hiddens),torch.zeros(num_hiddens, device=device))W_xz, W_hz, b_z = three()  # 更新门参数W_xr, W_hr, b_r = three()  # 重置门参数W_xh, W_hh, b_h = three()  # 候选隐状态参数# 输出层参数W_hq = normal(num_hiddens, num_outputs)b_q = torch.zeros(num_outputs, device=device)# 附加梯度params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad_(True)return params

  get_params 函数用于初始化模型的参数。它接受三个参数:vocab_size 表示词汇表的大小,num_hiddens 表示隐藏单元的数量,device 表示模型所在的设备(如 CPU 或 GPU)。

  • 首先,根据 vocab_size 初始化 num_inputsnum_outputs,它们的值都等于 vocab_size
  • 然后,定义了一个内部函数 normal,该函数用于生成一个服从均匀分布的随机参数矩阵。这个函数返回一个形状为 (inputs, hiddens) 的随机参数矩阵,并将其移动到指定的设备上。
  • 接下来,定义了另一个内部函数 three,该函数用于生成三个参数组成的元组。这三个参数分别表示更新门参数、重置门参数和候选隐状态参数。
  • 使用 three 函数分别初始化了更新门参数 W_xz, W_hz, b_z,重置门参数 W_xr, W_hr, b_r,候选隐状态参数 W_xh, W_hh, b_h
  • 然后,通过调用 normal 函数初始化了输出层参数 W_hqb_q
  • 最后,将所有的参数放入一个列表 params 中,并设置它们的 requires_grad 属性为 True,表示这些参数需要计算梯度。
  • 返回参数列表 params

2. init_gru_state

def init_gru_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device), )

  init_gru_state 函数用于初始化隐藏状态,作为时间步 t=0 时的输入。它接受三个参数:batch_size 表示批次大小,num_hiddens 表示隐藏单元的数量,device 表示模型所在的设备。

  • 使用 torch.zeros 函数创建并返回一个形状为 (batch_size, num_hiddens) 的全零张量,表示初始的隐藏状态。

3. gru

def gru(inputs, state, params):W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = paramsH, = stateoutputs = []# @符号为矩阵乘法的运算符号for X in inputs:Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)H = Z * H + (1 - Z) * H_tildaY = H @ W_hq + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H,)

   gru 函数是实现门控循环单元的关键部分,接受三个参数:inputs 表示输入序列,state 表示隐藏状态,params 表示模型的参数。

  • 首先,从 params 中解包出更新门参数、重置门参数、候选隐状态参数以及输出层参数。
  • 然后,通过一个循环遍历输入序列 inputs
  • 在每个时间步,根据输入 X 和当前的隐藏状态 H,计算更新门 Z、重置门 R 和候选隐状态 H_tilda
  • 然后,根据门控机制和候选隐状态,计算新的隐藏状态 H
  • 接着,使用隐藏状态 H 计算输出 Y
  • 将输出 Y 添加到输出列表 outputs 中。
  • 循环结束后,使用 torch.cat 函数将输出列表中的所有输出连接起来,得到一个形状为 (seq_length * batch_size, num_outputs) 的张量,表示模型在整个序列上的输出。
  • 最后,返回连接后的输出张量和最终的隐藏状态 (H,)

(二)创建模型

0. 超参数

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, num_epochs, lr= 28, 256, 200, 1
device = try_gpu()
  • 调用d2l.load_data_time_machine函数加载了训练数据,并设置了一些训练超参数。

1. 使用上述手动实现的GRU函数

model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
  • 使用先前定义的参数初始化函数、隐藏状态初始化函数和GRU函数创建自定义的RNN模型model
  • 调用d2l.train_ch8函数对该模型进行训练。

2. 调用Pytorch库的GRU类

gru_layer = nn.GRU(vocab_size, num_hiddens)
model_gru = RNNModel(gru_layer, vocab_size)
train(model_gru, train_iter, vocab, lr, num_epochs, device)
  • 创建了一个使用PyTorch库中的GRU类的model_gru,并对其进行训练。
  • 关于训练过程,请继续阅读

(三)基于GRU的语言模型训练

注:本实验使用Pytorch库的GRU类,不使用自定义的GRU函数

1. RNNModel类

  • 参考前文: 【深度学习实验】循环神经网络(三):门控制——自定义循环神经网络LSTM(长短期记忆网络)模型

2. 训练、测试及其余辅助函数

  • 参考前文: 【深度学习实验】循环神经网络(四):基于 LSTM 的语言模型训练

3. 主函数

a. 训练
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, num_epochs, lr= 28, 256, 200, 1
device = try_gpu()
gru_layer = nn.GRU(vocab_size, num_hiddens)
model_gru = RNNModel(gru_layer, vocab_size)
train(model_gru, train_iter, vocab, lr, num_epochs, device)print(predict('time ', 10, model_gru, vocab, device))
  • 训练中每个小批次(batch)的大小和每个序列的时间步数(time step)的值分别为32,25
  • 加载的训练数据迭代器和词汇表
  • vocab_size 是词汇表的大小,num_hiddens 是GRU 隐藏层中的隐藏单元数量,num_epochs 是训练的迭代次数,lr 是学习率
  • 选择可用的 GPU 设备进行训练,如果没有可用的 GPU,则会使用 CPU
  • 训练模型
  • 模型测试
b. 测试结果

在这里插入图片描述

4. 代码整合

# 导入必要的库
import torch
from torch import nn
import torch.nn.functional as F
from d2l import torch as d2l
import mathclass RNNModel(nn.Module):def __init__(self, rnn_layer, vocab_size, **kwargs):super(RNNModel, self).__init__(**kwargs)self.rnn = rnn_layerself.vocab_size = vocab_sizeself.num_hiddens = self.rnn.hidden_sizeself.num_directions = 1self.linear = nn.Linear(self.num_hiddens, self.vocab_size)def forward(self, inputs, state):X = F.one_hot(inputs.T.long(), self.vocab_size)X = X.to(torch.float32)Y, state = self.rnn(X, state)# 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)# 它的输出形状是(时间步数*批量大小,词表大小)。output = self.linear(Y.reshape((-1, Y.shape[-1])))return output, state# 在第一个时间步,需要初始化一个隐藏状态,由此函数实现def begin_state(self, device, batch_size=1):if not isinstance(self.rnn, nn.LSTM):# nn.GRU以张量作为隐状态return torch.zeros((self.num_directions * self.rnn.num_layers,batch_size, self.num_hiddens),device=device)else:# nn.LSTM以元组作为隐状态return (torch.zeros((self.num_directions * self.rnn.num_layers,batch_size, self.num_hiddens), device=device),torch.zeros((self.num_directions * self.rnn.num_layers,batch_size, self.num_hiddens), device=device))def train(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False):loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',legend=['train'], xlim=[10, num_epochs])if isinstance(net, nn.Module):updater = torch.optim.SGD(net.parameters(), lr)else:updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)for epoch in range(num_epochs):ppl, speed = train_epoch(net, train_iter, loss, updater, device, use_random_iter)if (epoch + 1) % 10 == 0:animator.add(epoch + 1, [ppl])print('Train Done!')torch.save(net.state_dict(), 'chapter6.pth')print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')def train_epoch(net, train_iter, loss, updater, device, use_random_iter):state, timer = None, d2l.Timer()metric = d2l.Accumulator(2)  # 训练损失之和,词元数量for X, Y in train_iter:if state is None or use_random_iter:# 在第一次迭代或使用随机抽样时初始化statestate = net.begin_state(batch_size=X.shape[0], device=device)if isinstance(net, nn.Module) and not isinstance(state, tuple):# state对于nn.GRU是个张量state.detach_()else:# state对于nn.LSTM或对于我们从零开始实现的模型是个张量for s in state:s.detach_()y = Y.T.reshape(-1)X, y = X.to(device), y.to(device)y_hat, state = net(X, state)l = loss(y_hat, y.long()).mean()if isinstance(updater, torch.optim.Optimizer):updater.zero_grad()l.backward()grad_clipping(net, 1)updater.step()else:l.backward()grad_clipping(net, 1)# 因为已经调用了mean函数updater(batch_size=1)metric.add(l * d2l.size(y), d2l.size(y))return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()def predict(prefix, num_preds, net, vocab, device):state = net.begin_state(batch_size=1, device=device)outputs = [vocab[prefix[0]]]get_input = lambda: torch.reshape(torch.tensor([outputs[-1]], device=device), (1, 1))for y in prefix[1:]:  # 预热期_, state = net(get_input(), state)outputs.append(vocab[y])for _ in range(num_preds):  # 预测num_preds步y, state = net(get_input(), state)outputs.append(int(y.argmax(dim=1).reshape(1)))return ''.join([vocab.idx_to_token[i] for i in outputs])def grad_clipping(net, theta):if isinstance(net, nn.Module):params = [p for p in net.parameters() if p.requires_grad]else:params = net.paramsnorm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))if norm > theta:for param in params:param.grad[:] *= theta / normdef try_gpu(i=0):# """如果存在,则返回gpu(i),否则返回cpu()"""# # if torch.cuda.device_count() >= i + 1:# #     return torch.device(f'cuda:{i}')return torch.device('cpu')batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, num_epochs, lr = 28, 256, 200, 1
device = try_gpu()gru_layer = nn.GRU(vocab_size, num_hiddens)
model_gru = RNNModel(gru_layer, vocab_size)
train(model_gru, train_iter, vocab, lr, num_epochs, device)print(predict('time ', 10, model_gru, vocab, device))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库连接池有什么用?它有哪些关键参数?

首先,数据库连接池是一种池化技术,池化技术的核心思想是实现资源的复用,避免资源重复创建销毁的开销。而在数据库的应用场景里面,应用程序每次向数据库发起 CRUD 操作的时候,都需要创建连接.在数据库访问量较大的情况下…

创建并启动华为HarmonyOS本地与远程模拟器及远程真机

1.打开设备管理器 2.选择要添加的手机设备,然后点击安装 3.正在下载华为手机模拟器 4.下载完成 5.创建新模拟器 下载系统镜像 点击下一步,创建模拟器 创建成功 启动模拟器 华为模拟器启动成功 6.登陆华为账号并使用远程模拟器 7.使用远程真机

Python---练习:使用for循环嵌套实现打印九九乘法表

思考: 外层循环主要用于控制循环的行数,内层循环用于控制列数。 基本语法: # 外层循环 for i in 序列1:# 内层循环for j in 序列2:循环体 序列1 序列2 ,就可以是range(1, 10) -----也就是从1,到9。 参考while循环…

前端html+css+js实现的2048小游戏,很完善。

源码下载地址 支持:远程部署/安装/调试、讲解、二次开发/修改/定制 逻辑用的是JavaScript,界面用canvas实现,暂时还没有添加动画。 视频浏览地址

python re 匹配所有字段名称相同的值

import retext {"code": 200,"message": "success","traceId": "da0b668c-4d67-44bf-907f-c072fc63839a","data": {"list": [{"articleId": 121862102,"title": "python 目录…

【vue会员管理系统】篇三之自定义Axios、初试后台接口、跨域问题

一、自定义封装Axios异步对象和添加拦截器 因为本项目很多组件需要通过Axios发送一步请求,所以封装Axios对象,自己封装的Axios在后续可以使用axios中提供的拦截器。 1.在src文件夹下创建utils文件夹,再在utils文件夹下创建request.js文件 2.…

改善游戏体验:数据分析与可视化的威力

当今,电子游戏已经超越了娱乐,成为一种文化现象,汇聚了全球数十亿的玩家。游戏制作公司正采用越来越复杂的技术来提高游戏质量,同时游戏数据分析和可视化工具变得不可或缺。 数据的力量:解析游戏体验 游戏制作涉及到大…

Kubernetes技术与架构-网络 3

Kubernetes集群支持为Pod或者Service申请IPV4或者IPV6的地址空间。 kube-apiserver --service-cluster-ip-range<IPv4 CIDR>,<IPv6 CIDR> kube-controller-manager --cluster-cidr<IPv4 CIDR>,<IPv6 CIDR> --service-cluster-ip-range<IPv4 CI…

特约|数码转型思考:Web3.0与银行

日前&#xff0c;欧科云链研究院发布重磅报告&#xff0c;引发银行界及金融监管机构广泛关注。通过拆解全球70余家银行的加密布局&#xff0c;报告认为&#xff0c;随着全球采用率的提升与相关技术的成熟&#xff0c;加密资产已成为银行业不容忽视也不能错过的创新领域。 作为…

YOLOv5源码中的参数超详细解析(3)— 训练部分(train.py)| 模型训练调参

前言:Hello大家好,我是小哥谈。YOLOv5项目代码中,train.py是用于模型训练的代码,是YOLOv5中最为核心的代码之一,而代码中的训练参数则是核心中的核心,只有学会了各种训练参数的真正含义,才能使用YOLOv5进行最基本的训练。🌈 前期回顾: YOLOv5源码中的参数超详细解析…

Redis | 数据结构(01)

这里写自定义目录标题 Redis 速度快的原因除了它是内存数据库&#xff0c;使得所有的操作都在内存上进行之外&#xff0c;还有一个重要因素&#xff0c;它实现的数据结构&#xff0c;使得我们对数据进行增删查改操作时&#xff0c;Redis 能高效的处理。 因此&#xff0c;这次我…

hibernate源码(2)--- springboot-jpa是如何引入的

starter引入 要想看jpa是如何将hibernate引入容器&#xff0c;首先要看的是 spring-boot-starter-data-jpa 如何引入依赖&#xff1a; 如果注意的话&#xff0c;starter的包内容其实没有什么实质的内容&#xff0c;关键是pom里的依赖 pom中规定了各依赖和依赖的版本&#xf…

Rabbitmq----分布式场景下的应用

服务异步通信-分布式场景下的应用 如果单机模式忘记也可以看看这个快速回顾rabbitmq,在做学习 消息队列在使用过程中&#xff0c;面临着很多实际问题需要思考&#xff1a; 1.消息可靠性 消息从发送&#xff0c;到消费者接收&#xff0c;会经理多个过程&#xff1a; 其中的每一…

深入浅出排序算法之直接插入排序(拓展:折半插入排序)

目录 1. 图示解析 2. 原理解析 3. 代码实现 4. 性能分析 5. 折半插入排序&#xff08;拓展&#xff09; 直接插入排序和选择排序的第一趟就是第一个关键字 &#xff01; 1. 图示解析 2. 原理解析 整个区间被分为&#xff1a;① 有序区间&#xff1b;② 无序区间 每次选…

【Java 进阶篇】Java Request 原理详解

在网络应用开发中&#xff0c;HTTP请求是一项常见而关键的任务。当我们使用Java编写网络应用时&#xff0c;了解HTTP请求的工作原理变得至关重要。本文将详细介绍Java中HTTP请求的原理&#xff0c;包括请求的结构、发送请求的方法以及处理请求的过程。 HTTP请求的基本结构 HT…

模板(模板函数+模板类)

模板&#xff08;模板函数模板类&#xff09; 1.模板1.1 模板出现的原因1.2 函数模板模板函数的定义模板函数的使用方法总结 1.2 类模板使用举例 1.模板 1.1 模板出现的原因 为了代码重用;使重用的代码不受数据类型的限制 把数据类型设计为一个参数&#xff0c;即参数化(par…

一键同步,无处不在的书签体验:探索多电脑Chrome书签同步插件

说在前面 平时大家都是怎么管理自己的浏览器书签数据的呢&#xff1f;有没有过公司和家里的电脑浏览器书签不同步的情况&#xff1f;有没有过电脑突然坏了但书签数据没有导出&#xff0c;导致书签数据丢失了&#xff1f;解决这些问题的方法有很多&#xff0c;我选择自己写个chr…

2018年亚太杯APMCM数学建模大赛B题人才与城市发展求解全过程文档及程序

2018年亚太杯APMCM数学建模大赛 B题 人才与城市发展 原题再现 招贤纳士是过去几年来许多城市的亮点之一。北京、上海、武汉、成都、西安、深圳&#xff0c;实际上都在用各种吸引人的政策来争夺人才。人才代表着城市创新发展的动力&#xff0c;因为他们能够在更短的时间内学习…

新生儿黄疸:原因、科普和注意事项

引言&#xff1a; 新生儿黄疸是许多新生儿面临的常见情况。虽然它通常是一种暂时的现象&#xff0c;但对于许多父母来说&#xff0c;这可能引发担忧。本文将科普新生儿黄疸的原因&#xff0c;提供相关信息&#xff0c;并为父母和监护人提供注意事项&#xff0c;以帮助他们更好…