MS COCO数据集的评价标准以及不同指标的选择推荐(AP、mAP、MS COCO、AR、@、0.5、0.75、1、目标检测、评价指标)

目标检测模型性能衡量指标、MS COCO 数据集的评价标准以及不同指标的选择推荐

0. 引言

0.1 COCO 数据集评价指标

目标检测模型通过 pycocotools 在验证集上会得到 COCO 的评价列表,具体参数的含义是什么呢?

0.2 目标检测领域常用的公开数据集

  1. PASCAL VOC
  2. Microsoft COCO(MS COCO)

在 MS COCO 数据集出来之前,目标检测基本上用的是 PASCAL VOC 数据集,现在 MS COCO 非常流行。这两个数据集均有自己的评判标准。

0.3 COCO(Common Objects in Context,上下文中的常见对象)数据集简介

0.3.1 介绍

COCO 数据集是一个可用于图像检测(Image Detection),语义分割(Semantic Segmentation)和图像标题生成(Image Captioning)的大规模数据集。它有超过 330K 张图像(其中 220K 张是有标注的图像),包含

  • 150 万个目标
  • 80 个目标类别(object categories:行人、汽车、大象等)
  • 91 种材料类别(stuff categoris:草、墙、天空等)
  • 每张图像包含五句图像的语句描述
  • 且有 250, 000 个带关键点标注的行人

MS COCO官网:https://cocodataset.org/#home

0.3.2 MS COCO 可以应用的任务

  1. 目标检测(object detection):使用 bounding box 或者 object segmentation (也称为instance segmentation)将不同的目标进行标定。

  2. Densepose(密集姿势估计):DensePose 任务涉及同时检测人、分割他们的身体并将属于人体的所有图像像素映射到身体的3D表面。用于不可控条件下的密集人体姿态 估计。

  3. Key-points detection(关键点检测):在任意姿态下对人物的关键点进行定位,该任务包含检测行人及定位到行人的关键点。

  4. Stuff Segmentation(材料细分):语义分割中针对 stuff class 类的分割(草,墙壁,天空等)

  5. Panoptic Segmentation(全景分割):其目的是生成丰富且完整的连贯场景分割,这是实现自主驾驶或增强现实等真实世界视觉系统的重要一步。

  6. image captioning(图像标题生成):根据图像生成一段文字。

0.3.3 COCO 的 80 个类别

编号英文名称中文名称编号英文名称中文名称编号英文名称中文名称
1person28boat55cup杯子
2bicycle自行车29traffic light交通灯56fork叉子
3car汽车30fire hydrant消防栓57knife
4motorcycle摩托车31stop sign停车标志58spoon勺子
5airplane飞机32parking meter停车计时器59bowl
6bus公共汽车33bench长凳60banana香蕉
7train火车34bird61apple苹果
8truck卡车35cat62sandwich三明治
9boat36dog63orange橙子
10traffic light交通灯37horse64broccoli西兰花
11fire hydrant消防栓38sheep65carrot胡萝卜
12stop sign停车标志39cow66hot dog热狗
13parking meter停车计时器40elephant大象67pizza披萨
14bench长凳41bear68donut甜甜圈
15bird42zebra斑马69cake蛋糕
16cat43giraffe长颈鹿70chair椅子
17dog44backpack背包71couch沙发
18horse45umbrella雨伞72potted plant盆栽
19sheep46handbag手提包73bed
20cow47tie领带74dining table餐桌
21elephant大象48suitcase行李箱75toilet厕所
22bear49frisbee飞盘76tv monitor电视监视器
23zebra斑马50skis滑雪板77laptop笔记本电脑
24giraffe长颈鹿51snowboard单板滑雪78mouse鼠标
25backpack背包52sports ball运动球79remote遥控器
26umbrella雨伞53kite风筝80keyboard键盘
27tie领带54baseball bat棒球棍

1. 目标检测中常见的指标

对于这样一张图片,怎样才能算检测正确呢?其中,绿色为 GT,红色为预测框。

  • IoU 大于指定阈值?
  • 类别是否正确?
  • confidence 大于指定阈值?

以上三点都是我们需要考虑的。

1.1 TP、FP、FN

1.1.1 定义

  • TP(True Positive):预测正确的预测框数量 [IoU > 阈值](同一个 GT 只计算一次)
  • FP(False Positive):检测到是同一个 GT 的多余预测框的数量 [IoU < 阈值](或者是检测到同一个 GT 的多余预测框的数量)
  • FN(False Negative):没有检测到 GT 的预测框数量 [漏检的数量]
  • 阈值根据任务进行调整,一般选择 0.5
  • FP 就是“假阳性”,就是模型误认为是 TP

1.1.2 例子说明 TP、FP、FN

举个例子理解 TP、FP、FN:

对于张图片来说,绿色 为 GT,红色 为模型预测框,IoU 阈值设置为 0.5。

  • 对于中间这只猫来说,在 绿色框(GT) 中的 预测框(红色)绿色框 的 IoU 肯定是 >0.5 的,所以它应该是一个 TP(预测对了目标且 IoU > 阈值);而对于 偏左的预测框 来说,它和 GT 的 IoU 肯定是不足 0.5 的,加之因为有 TP 的存在,所以它是 FP。
  • 对于右下角的那只猫,GT 是有的,但模型并没有给出对应的预测框,因此模型对于这只猫来说,漏检了,故 FN 的数量为 1。

1.2 AP(Average Precision,平均精度)

1.2.1 Precision

P r e c i s i o n = T P T P + F P \mathrm{Precision = \frac{TP}{TP + FP}} Precision=TP+FPTP

解释:模型预测的所有目标(Object)中,预测正确的比例 -> 查准率

模型认为正确的目标 中 确实预测对了多少


那么仅仅通过 Precision 这个指标能不能全面衡量模型的检测能力呢?举个例子进行说明:

同样的,绿色的为 Ground Truth,红色的为 预测框。

上面这张图片有 5 个目标,但是网络只针对猫 ① 给出了预测框(红色的),剩下的猫都没有检测出来。这里的 TP=1,FP=0。所以此时的 Precision 为:

P r e c i s i o n = T P T P + F P = 1 1 + 0 = 1 = 100 % \begin{aligned} \mathrm{Precision} & = \mathrm{\frac{TP}{TP+FP}} \\ & = \frac{1}{1 + 0} \\ & = 1\\ & = 100\% \end{aligned} Precision=TP+FPTP=1+01=1=100%

很明显对于这张图片网络漏检了 4 个目标,但 Precision 又显示结果是非常好的。因此我们就可以知道了,仅仅通过 Precision 无法评判检测网络的性能。为了解决这个问题,我们引入了另外一个指标 —— Recall。

1.2.2 Recall

R e c a l l = T P T P + F N \mathrm{Recall = \frac{TP}{TP + FN}} Recall=TP+FNTP

解释:所有真实目标中,模型预测正确的比例 -> 查全率

本应该检测对的,模型检测对了多少

那么我们只使用 Recall 这个指标来判定模型的好坏吗?举个例子说明:

这张图片和上一张图片类似,网络总共预测出了 50 个预测框(即 50 个目标)。这 50 个预测框中包括了所有要检测的目标,那么该网络针对这张图片的 Recall 为:

R e c a l l = T P T P + F N = 1 1 + 0 = 1 = 100 % \begin{aligned} \mathrm{Recall} & = \mathrm{\frac{TP}{TP+FN}} \\ & = \frac{1}{1 + 0} \\ & = 1\\ & = 100\% \end{aligned} Recall=TP+FNTP=1+01=1=100%

很明显,单单使用 Recall 无法评判模型的好坏。所以我们需要同时使用 Precision 和 Recall 这两个指标来进行网络性能的评判,即引入 —— AP。

1.2.3 AP —— P-R 曲线下面积

AP 就是P-R曲线下方的面积,而 P-R 分别为 Precision 和 Recall。

假设模型已经训练完毕,验证集为下面 3 张图片:

1.2.3.1 第一张图片

首先判断该图片中有几个目标(GT)?很明显绿色的框有两个,所以有两个 GT,即

n u m o b j = 0 + 2 = 2 。 \mathrm{num_{obj}} = 0 + 2 = 2。 numobj=0+2=2

接下来同一个列表统计网络所检测到的目标信息:

GT idConfidenceOB (IoU=0.5)
10.98True
10.61False

Note:

  • GT id 为 预测框匹配的 GT 的 id;Confidence 为预测框的置信度(是此类别的概率);OB 为判断该预测框是否是 TP。
  • 该表从上到下的顺序是根据 Confidence 降序排列的
  • 对于 GT id = 2,网络并没有给出预测框,所以表中没有相关信息
1.2.3.2 第二张图片

这张图片中目标的个数(绿色的框)有 1 个,所以累积目标个数:

n u m o b j = 2 + 1 = 3 。 \mathrm{num_{obj}} = 2 + 1 = 3。 numobj=2+1=3

表也需更新:

GT idConfidenceOB (IoU=0.5)
10.98True
30.89True
30.66False
10.61False
1.2.3.3 第三张图片

累积目标个数:

n u m o b j = 3 + 4 = 7 。 \mathrm{num_{obj}} = 3 + 4 = 7。 numobj=3+4=7

更新表:

GT idConfidenceOB(IoU=0.5)
10.98True
30.89True
60.88True
70.78True
30.66False
10.61False
40.52True
1.2.3.4 计算 AP

得到表以后,我们计算针对不同 Confidence(即取不同 Confidence 阈值)得到的 Precision 和 Recall 的信息)。

GT idConfidenceOB (IoU=0.5)
10.98True
30.89True
60.88True
70.78True
30.66False
10.61False
40.52True
  1. 首先将 Confidence 的阈值设置为 0.98(Confidence ≥ 0.98 的目标才算匹配正确),只有一个预测框符合条件(表中的第一行)。

    • TP = 1; FP = 0; FN = 6

    在 Confidence≥0.98 的条件下,TP=1 没什么问题;FP=0 是因为阈值的存在;FN=6 是因为累积目标个数 num_ob=7,所以 F N = n u m _ o b − T P = 7 − 1 = 6 \mathrm{FN=num\_ob - TP} = 7 - 1 = 6 FN=num_obTP=71=6。因此我们可以得到 P r e c i s i o n = T P T P + F P = 1 1 + 0 = 1 \mathrm{Precision = \frac{TP}{TP + FP} = \frac{1}{1+0}=1} Precision=TP+FPTP=1+01=1 R e c a l l = T P T P + F N = 1 1 + 6 = 0.14 \mathrm{Recall = \frac{TP}{TP + FN} = \frac{1}{1+6}=0.14} Recall=TP+FNTP=1+61=0.14
    Note:这个TP; FP; FN是看那个表,就不区分什么第几张图片了,看表就可以。

  2. 将 Confidence 阈值设置为 0.89

    • 此条件下,TP = 2; FP = 0; FN = num_ob - TP = 7 - 2 = 5,我们可以得到 Precision 和 Recall
  3. 将 Confidence 阈值设置为 0.66

    • 此条件下,TP=4; FP=1; FN=num_ob-TP=7-4=3,我们可以得到 P r e c i s i o n = T P T P + F P = 4 4 + 1 = 0.80 \mathrm{Precision = \frac{TP}{TP + FP} = \frac{4}{4+1}=0.80} Precision=TP+FPTP=4+14=0.80 R e c a l l = T P T P + F N = 4 4 + 3 = 0.57 \mathrm{Recall = \frac{TP}{TP + FN} = \frac{4}{4+3}=0.57} Recall=TP+FNTP=4+34=0.57

全部计算完毕后,结果如下表所示。

RankPrecisionRecall
11.00.14
21.00.28
31.00.42
41.00.57
50.800.57
60.660.57
70.710.71

我们可以根据求得的一系列的 Precision 和 Recall 绘制 P-R 曲线。以 Recall 为横坐标,Precision 为纵坐标得到 P-R 曲线,如下图所示。

在绘制 P-R 曲线时需注意:对于 Recall(横坐标)需要滤除一些重复数据(图中用框框住的即为参与计算的点,有两个点没有被框,它俩不参与 AP 的计算)。根据表中的数据可知,Recall=0.57 有 3 个值,此时需保留 Precision 最大的值,即:

RankPrecisionRecall
11.00.14
21.00.28
31.00.42
41.00.57
50.800.57
60.660.57
70.710.71

图中阴影部分的面积就是 AP,计算如下(重复的 Recall 已经滤除):

RankPrecisionRecall
11.00.14
21.00.28
31.00.42
41.00.57
60.710.71

R e c a l l = ∑ i = 1 R a n k ( R e c a l l i − R e c a l l i − 1 ) × max ⁡ ( P r e c i s i o n i , . . . , R a n k ) R e c a l l = ∑ i = 本行 R a n k ( R e c a l l 本行 − R e c a l l 上一行 ) × 本行及以下最大的 P r e c i s i o n \begin{aligned} \mathrm{Recall} & = \sum_{i=1}^{\mathrm{Rank}} (\mathrm{Recall}_i -\mathrm{Recall}_{i-1}) \times \max(\mathrm{Precision}_{ i, ..., \mathrm{Rank}}) \\ \mathrm{Recall} & = \sum_{i=本行}^{\mathrm{Rank}} (\mathrm{Recall}_{本行} -\mathrm{Recall}_{上一行}) \times 本行及以下最大的\mathrm{Precision} \end{aligned} RecallRecall=i=1Rank(RecalliRecalli1)×max(Precisioni,...,Rank)=i=本行Rank(Recall本行Recall上一行)×本行及以下最大的Precision

根据公式可以求得阴影的面积,即 AP 为:

R e c a l l = ( 0.14 − 0 ) × 1.0 + ( 0.28 − 0.14 ) × 1.0 + ( 0.42 − 0.28 ) × 1.0 + ( 0.57 − 0.42 ) × 1.0 + ( 0.71 − 0.57 ) × 0.71 = 0.6694 \begin{aligned} \mathrm{Recall} & = (0.14 - 0) \times 1.0 + (0.28 - 0.14) \times 1.0 + (0.42 - 0.28) \times 1.0 + (0.57 - 0.42) \times 1.0 + (0.71 - 0.57) \times 0.71 \\ & = 0.6694 \end{aligned} Recall=(0.140)×1.0+(0.280.14)×1.0+(0.420.28)×1.0+(0.570.42)×1.0+(0.710.57)×0.71=0.6694

了解完 AP 后我们就可以进一步得到一个新的指标 —— mAP。

1.3 mAP(mean Average Precision,即各类别 AP 的平均值)

mAP 就是各类别 AP 的平均值,计算公式如下:

m A P = 1 n c ∑ i = 1 n c A P i \mathrm{mAP = \frac{1}{nc}\sum^{nc}_{i=1}AP_i} mAP=nc1i=1ncAPi

其中 nc 为类别数。

1.4 注意事项

以上的 TP、FP、FN 都是经过 NMS 处理后得到的预测框。

2. MS COCO 评价指标中每条数据的含义

MS COCO 官网说明:https://cocodataset.org/#detection-eval

Note:图片中虽然写的是 AP,但实际上表示的是 mAP。

2.1 Average Precision (AP)

  1. A P \mathrm{AP} AP:MS COCO 的主要评价指标,设置的 IoU 阈值为 IoU = range(0.5, 1.00, 0.05) 共 10 个 IoU 的 mAP 的均值,计算公式如下:
    A P = 1 10 ( m A P I o U = 0.5 + m A P I o U = 0.55 + m A P I o U = 0.60 + m A P I o U = 0.65 + m A P I o U = 0.70 + m A P I o U = 0.75 + m A P I o U = 0.80 + m A P I o U = 0.85 + m A P I o U = 0.9 + m A P I o U = 0.95 ) \mathrm{AP = \frac{1}{10}(mAP^{IoU=0.5} + mAP^{IoU=0.55} + mAP^{IoU=0.60} + mAP^{IoU=0.65} + mAP^{IoU=0.70} + mAP^{IoU=0.75} + mAP^{IoU=0.80} + mAP^{IoU=0.85} + mAP^{IoU=0.9} + mAP^{IoU=0.95})} AP=101(mAPIoU=0.5+mAPIoU=0.55+mAPIoU=0.60+mAPIoU=0.65+mAPIoU=0.70+mAPIoU=0.75+mAPIoU=0.80+mAPIoU=0.85+mAPIoU=0.9+mAPIoU=0.95)
  2. A P I o U = 0.50 \mathrm{AP^{IoU}=0.50} APIoU=0.50:将 IoU 阈值设置为 0.5 得到的 mAP 值(就是上面我们举的例子),这个取值也是 PASCAL VOC 的评价指标。
  3. A P I o U = 0.75 \mathrm{AP^{IoU}=0.75} APIoU=0.75:是更加严格的标准(因为 IoU 的阈值越大,说明网络预测框与 GT 重合度越来越高 -> 目标的定位越来越准,这对网络来说是很难的)。

2.2 Across Scales

  1. APsmallmAP 针对小目标 若检测目标(GT)的像素面积小于 3 2 2 32^2 322,则将其归为小目标 ——衡量网络对于小目标的平均查准率
  2. APmediummAP 针对中目标 若检测目标(GT)的像素面积在 [ 3 2 2 , 9 6 2 ] [32^2, 96^2] [322,962] 之间,则将其归为中目标 ——衡量网络对于中等目标的平均查准率
  3. APlargemAP 针对大目标 若检测目标(GT)的像素面积大于 9 6 2 96^2 962,则将其归为大目标 ——衡量网络对于大目标的平均查准率

通过这三个指标可以看出该目标检测网络对于不同尺度目标的检测效果。如果我们的任务需要检测的目标都是较小的,我们应该更加关注与 A P s m a l l \mathrm{AP^{small}} APsmall 参数而不是 A P l a r g e \mathrm{AP^{large}} APlarge

2.3 Average Recall (AR)

对于目标检测网络,在代码部分会限制每张图片最终预测框的数量,这里的 max 就是这个数量。如 max=100,即每张图片最终预测 100 个预测框。而这里的 A R m a x = 100 \mathrm{AR^{max}=100} ARmax=100 就表示在每张图片预测框阈值为 100 的情况下,平均的查全率(Recall)是多少。

  1. A R m a x = 1 \mathrm{AR^{max}=1} ARmax=1:在每张图片预测框数量阈值为 1 的情况下,平均的查全率(Recall)是多少
  2. A R m a x = 10 \mathrm{AR^{max}=10} ARmax=10:在每张图片预测框数量阈值为 10 的情况下,平均的查全率(Recall)是多少
  3. A R m a x = 100 \mathrm{AR^{max}=100} ARmax=100:在每张图片预测框数量阈值为 100 的情况下,平均的查全率(Recall)是多少

从上图可以看到, A R m a x = 100 = 64 % \mathrm{AR^{max}=100}=64\% ARmax=100=64% A R m a x = 10 = 63.3 % \mathrm{AR^{max}=10}=63.3\% ARmax=10=63.3% A R m a x = 1 = 45.2 % \mathrm{AR^{max}=1}=45.2\% ARmax=1=45.2%。这说明 max 取 100 和取 10 相差不大,进一步说明了,模型训练时使用的数据集每张图片中目标(GT)的数目并不是很多,基本上在 10 左右;而当预测框数量限制在 1 时,它的 AR 仅为 45.2%,说明每张图片的目标个数一般是 >1 的。

2.4 AR Across Scales

与 AP、AP across scales 类似,AR across scales 表示对应不同目标尺度的 AR

  1. A R s m a l l \mathrm{AR^{small}} ARsmallAR 针对小目标 若检测目标(GT)的像素面积小于 3 2 2 32^2 322,则将其归为小目标 ——衡量网络对于小目标的平均查全率(Recall)
  2. A R m e d i u m \mathrm{AR^{medium}} ARmediumAR 针对中目标 若检测目标(GT)的像素面积在 [ 3 2 2 , 9 6 2 ] [32^2, 96^2] [322,962] 之间,则将其归为中目标 ——衡量网络对于中等目标的平均查全率(Recall)
  3. A R l a r g e \mathrm{AR^{large}} ARlargeAR 针对大目标 若检测目标(GT)的像素面积大于 9 6 2 96^2 962,则将其归为大目标 ——衡量网络对于大目标的平均查全率(Recall)

3. 各种指标的选择 —— 基于不同的任务

不同的任务需要使用不同的指标。

3.1 mAP

  • 于 PASCAL VOC 的 mAP 来说, A P I o U = 0.50 \mathrm{AP^{IoU}=0.50} APIoU=0.50 是要看的,因为它是 PASCAL VOC 的主要评价指标。
  • 对于 MS COCO 数据集来说, A P \mathrm{AP} AP(第一行,10 个 mAP 的平均)是要看的,因为它是 MS COCO 的主要评价指标。
  • 如果我们对 目标框定位精度要求较高 的话,我们可以关注 A P I o U = 0.75 \mathrm{AP^{IoU}=0.75} APIoU=0.75
  • 如果我们对 小目标检测要求比较高 的话,我们可以关注 A P s m a l l \mathrm{AP^{small}} APsmall,通过这个值可以了解网络对于小目标检测的平均查准率(整体情况)
  • 如果我们对 中目标检测要求比较高 的话,我们可以关注 A P m e d i u m \mathrm{AP^{medium}} APmedium
  • 如果我们对 大目标检测要求比较高 的话,我们可以关注 A P l a r g e \mathrm{AP^{large}} APlarge

3.2 AR

主要关注下面两个指标:

  1. A R m a x = 10 \mathrm{AR^{max}=10} ARmax=10
  2. A R m a x = 100 \mathrm{AR^{max}=100} ARmax=100

如果它俩 AR(平均查全率)相差很小的话, 可以减少网络预测框的个数,从而提高目标检测的效率。

参考

  1. 目标检测mAP计算以及coco评价标准
  2. COCO数据集介绍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络基础知识

1.什么是链接? 链接是指两个设备之间的连接。它包括用于一个设备能够与另一个设备通信的电缆类型和协议。 2.OSI 参考模型的层次是什么? 有 7 个 OSI 层&#xff1a;物理层&#xff0c;数据链路层&#xff0c;网络层&#xff0c;传输层&#xff0c;会话层&#xff0c;表示层和…

04 文件管理

文件管理 文件和目录的创建 删除文件和目录 文件查找命令 文件的拷贝和移动 打包和压缩

Macos文件图像比较工具:Kaleidoscope for Mac

Kaleidoscope是一款文件图像比较工具&#xff0c;它可以方便地比较两个文本或者图片文件的差异。这个工具可以在Mac系统上使用&#xff0c;并且支持多种文件格式&#xff0c;包括文本文件、图片文件、PDF文件等等。 Kaleidoscope有一个直观的用户界面&#xff0c;可以让用户轻…

【蓝牙协议】简介:蓝牙芯片、蓝牙协议架构

文章目录 蓝牙芯片架构另一个视角由下到上看&#xff1a;Controller-->Host由上到下看&#xff1a;Host-->Controller 蓝牙协议架构视角HW层——蓝牙芯片层Transport——数据传输层HOST——协议层 总结 参考&#xff1a;https://zhuanlan.zhihu.com/p/585248998 参考&…

OpenCV官方教程中文版 —— 图像金字塔

OpenCV官方教程中文版 —— 图像金字塔 前言一、原理二、使用金字塔进行图像融合 前言 • 学习图像金字塔 • 使用图像创建一个新水果&#xff1a;“橘子苹果” • 将要学习的函数有&#xff1a;cv2.pyrUp()&#xff0c;cv2.pyrDown()。 一、原理 一般情况下&#xff0c;我…

全连接层是什么,有什么作用?

大家好啊&#xff0c;我是董董灿。 如果你是搞AI算法的同学&#xff0c;相信你在很多地方都见过全连接层。 无论是处理图片的卷积神经网络&#xff08;CNN&#xff09;&#xff0c;还是处理文本的自然语言处理&#xff08;NLP&#xff09;网络&#xff0c;在网络的结尾做分类…

竞赛选题 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

文章目录 0 前言1 背景2 算法原理2.1 动物识别方法概况2.2 常用的网络模型2.2.1 B-CNN2.2.2 SSD 3 SSD动物目标检测流程4 实现效果5 部分相关代码5.1 数据预处理5.2 构建卷积神经网络5.3 tensorflow计算图可视化5.4 网络模型训练5.5 对猫狗图像进行2分类 6 最后 0 前言 &#…

循环队列c语言版

一、循环队列结构体 typedef int QueueDataType; #define CQ_MAX_SIZE 10typedef struct CircularQueue {QueueDataType data[CQ_MAX_SIZE];/**标记队列首*/QueueDataType head;/**标记队列尾部*/QueueDataType rear;} CircularQueue; 二、循环队列操作函数声明 /**创建队…

软件工程——期末复习知识点汇总

本帖的资料来源于某国内顶流高校的期末考试资料&#xff0c;仅包含核心的简答题&#xff0c;大家结合个人情况&#xff0c;按需复习~ 总的来说&#xff0c;大层面重点包括如下几个方面&#xff1a; 软件过程需求工程 设计工程软件测试软件项目管理软件过程管理 1.掌握软件生命…

Creaform形创HandySCAN MAX l Elite三维扫描仪便携式3D测量解决方案

CASAIM中科院广州电子智能制造事业部连续多年荣获形创Creaform战略级代理商证书。战略级代理商是形创Creaform最高级别的合作伙伴。 2023年CASAIM中科院广州电子智能制造事业部的形创Creaform战略级代理商证书&#xff1a; Creaform 形创是便携式三维测量解决方案和工程服务领…

[Python进阶] 消息框、弹窗:tkinter库

6.16 消息框、弹窗&#xff1a;tkinter 6.16.1 前言 应用程序中的提示信息处理程序是非常重要的部分&#xff0c;用户要知道他输入的资料到底正不正确&#xff0c;或者是应用程序有一些提示信息要告诉用户&#xff0c;都必须通过提示信息处理程序来显示适当的信息&#xff0c…

NPDP产品经理证书是什么行业的证书?

NPDP是一个跨行业的证书&#xff0c;它适用于各种不同类型和规模的组织。无论是制造业、服务业还是科技领域&#xff0c;都可以从NPDP认证中获益。 1. 制造业&#xff1a; 制造业涉及大量的产品开发和创新活动。从汽车制造到电子设备制造&#xff0c;从家居用品到航天航空&…

idea + Docker-Compose 实现自动化打包部署(仅限测试环境)

一、修改docker.service文件&#xff0c;添加监听端口 vi /usr/lib/systemd/system/docker.service ExecStart/usr/bin/dockerd -H fd:// --containerd/run/containerd/containerd.sock -H tcp://0.0.0.0:2375 -H unix://var/run/docker.sock重启docker服务 systemctl daemo…

Shopee、Lazada卖家不得不看的提升销量技巧,自养号测评打造权重

近年来&#xff0c;大部分虾皮、Lazada卖家开始通过测评补单的方式来提升店铺权重和产品排名&#xff0c;以吸引更多流量。这种方式可以有效提高产品的销售转化率&#xff0c;对店铺的运营起到推动作用。然而&#xff0c;测评补单并非简单的购买过程&#xff0c;其中涉及到许多…

干洗店预约下单管理系统收衣开单拍照必备软件

随着生活水平的提高和节奏的加快&#xff0c;商务人士的衣物越来越多&#xff0c;但精力和时间却越来越少。于是&#xff0c;干洗店应运而生&#xff0c;在中国&#xff0c;几乎所有的中心城市干洗店都门庭若市。若每人每月需要干洗一套服装&#xff0c;一个城市每月则需干洗50…

HTML5语义化标签 header 的详解

&#x1f31f;&#x1f31f;&#x1f31f; 专栏详解 &#x1f389; &#x1f389; &#x1f389; 欢迎来到前端开发之旅专栏&#xff01; 不管你是完全小白&#xff0c;还是有一点经验的开发者&#xff0c;在这里你会了解到最简单易懂的语言&#xff0c;与你分享有关前端技术和…

idea使用Alibaba Cloud Toolkit实现自动部署

在日常开发过程中&#xff0c;经常会使用到jenkins进行项目部署&#xff0c;但对一些小项目来说&#xff0c;这就过于复杂&#xff0c;就可以使用Alibaba Cloud Toolkit插件配合shell脚本进行项目的远程部署工作。 一、下载Alibaba Cloud Toolkit插件 二、服务器安装nohup 1.…

Kafka - 消息队列的两种模式

文章目录 消息队列的两种模式点对点模式&#xff08;Point-to-Point&#xff0c;P2P&#xff09;发布/订阅模式&#xff08;Publish/Subscribe&#xff0c;Pub/Sub&#xff09; 小结 消息队列的两种模式 消息队列确实可以根据消息传递的模式分为 点对点模式发布/订阅模式 这两…

Power BI 实现日历图,在一张图中展示天、周、月数据变化规律

《数据可视化》这本书里介绍了一个时间可视化的案例&#xff08;如下图所示&#xff09;&#xff0c;以日历图的形式展示数据的变化&#xff0c;可以在一张图上同时观察到&#xff1a;&#xff08;1&#xff09;每一天的数据变化&#xff1b;&#xff08;2&#xff09;随周变化…

创建个人github.io主页(基础版)//吐槽:很多国内教程已经失效了

一、就跟着官网教程来很快就好了 官方文档的教程 GitHub Pages | Websites for you and your projects, hosted directly from your GitHub repository. Just edit, push, and your changes are live. // 简单跑通为例&#xff0c;第一个链接直接能行了&#xff0c;如果不想…