竞赛选题 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理

import cv2 as cv
import os
import numpy as npimport random
import pickleimport timestart_time = time.time()data_dir = './data'
batch_save_path = './batch_files'# 创建batch文件存储的文件夹
os.makedirs(batch_save_path, exist_ok=True)# 图片统一大小:100 * 100
# 训练集 20000:100个batch文件,每个文件200张图片
# 验证集 5000:一个测试文件,测试时 50张 x 100 批次# 进入图片数据的目录,读取图片信息
all_data_files = os.listdir(os.path.join(data_dir, 'train/'))# print(all_data_files)# 打算数据的顺序
random.shuffle(all_data_files)all_train_files = all_data_files[:20000]
all_test_files = all_data_files[20000:]train_data = []
train_label = []
train_filenames = []test_data = []
test_label = []
test_filenames = []# 训练集
for each in all_train_files:img = cv.imread(os.path.join(data_dir,'train/',each),1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)train_data.append(img_data)if 'cat' in each:train_label.append(0)elif 'dog' in each:train_label.append(1)else:raise Exception('%s is wrong train file'%(each))train_filenames.append(each)# 测试集
for each in all_test_files:img = cv.imread(os.path.join(data_dir,'train/',each), 1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)test_data.append(img_data)if 'cat' in each:test_label.append(0)elif 'dog' in each:test_label.append(1)else:raise Exception('%s is wrong test file'%(each))test_filenames.append(each)print(len(train_data), len(test_data))# 制作100个batch文件
start = 0
end = 200
for num in range(1, 101):batch_data = train_data[start: end]batch_label = train_label[start: end]batch_filenames = train_filenames[start: end]batch_name = 'training batch {} of 15'.format(num)all_data = {'data':batch_data,'label':batch_label,'filenames':batch_filenames,'name':batch_name}with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:pickle.dump(all_data, f)start += 200end += 200# 制作测试文件
all_test_data = {'data':test_data,'label':test_label,'filenames':test_filenames,'name':'test batch 1 of 1'}with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:pickle.dump(all_test_data, f)end_time = time.time()
print('制作结束, 用时{}秒'.format(end_time - start_time))

5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

5.3 tensorflow计算图可视化

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步

acc_list = []
with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(TRAIN_STEP):train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)eval_ops = [self.loss, self.acc, self.train_op]eval_ops_results = sess.run(eval_ops, feed_dict={self.x:train_data,self.y:train_label,self.keep_prob:0.7})loss_val, train_acc = eval_ops_results[0:2]acc_list.append(train_acc)if (i+1) % 100 == 0:acc_mean = np.mean(acc_list)print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(i+1,loss_val,train_acc,acc_mean))if (i+1) % 1000 == 0:test_acc_list = []for j in range(TEST_STEP):test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)acc_val = sess.run([self.acc],feed_dict={self.x:test_data,self.y:test_label,self.keep_prob:1.0})test_acc_list.append(acc_val)print('[Test ] step:{0}, mean_acc:{1:.5}'.format(i+1, np.mean(test_acc_list)))# 保存训练后的模型os.makedirs(SAVE_PATH, exist_ok=True)self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119091.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

循环队列c语言版

一、循环队列结构体 typedef int QueueDataType; #define CQ_MAX_SIZE 10typedef struct CircularQueue {QueueDataType data[CQ_MAX_SIZE];/**标记队列首*/QueueDataType head;/**标记队列尾部*/QueueDataType rear;} CircularQueue; 二、循环队列操作函数声明 /**创建队…

软件工程——期末复习知识点汇总

本帖的资料来源于某国内顶流高校的期末考试资料,仅包含核心的简答题,大家结合个人情况,按需复习~ 总的来说,大层面重点包括如下几个方面: 软件过程需求工程 设计工程软件测试软件项目管理软件过程管理 1.掌握软件生命…

SQL 选择数据库 USE语句

SQL 选择数据库 USE语句 当SQL Schema中有多个数据库时,在开始操作之前,需要选择一个执行所有操作的数据库。 SQL USE语句用于选择SQL架构中的任何现有数据库。 句法 USE语句的基本语法如下所示 : USE DatabaseName;数据库名称在RDBMS中必须是唯一的。…

How to install mongodb-7.0 as systemd service with podman

How to install mongodb-7.0 as systemd service with podman 1、安装1.1、创建卷1.2、配置文件1.3、创建容器1.4、服务管理1.5、容器管理 2、客户端管理 1、安装 1.1、创建卷 配置卷 podman volume create --label typemongo-7.0 --label envdev mongo-7.0-conf数据卷 pod…

Canny算子详解及例程

Canny算子是一种经典的边缘检测算法,于1986年由John Canny提出。相比其他边缘检测算法,Canny算子具有以下特点: 高准确性:Canny算子能够对图像中真实边缘进行准确检测,并尽量排除非边缘部分的干扰。 低错误率&#xf…

Creaform形创HandySCAN MAX l Elite三维扫描仪便携式3D测量解决方案

CASAIM中科院广州电子智能制造事业部连续多年荣获形创Creaform战略级代理商证书。战略级代理商是形创Creaform最高级别的合作伙伴。 2023年CASAIM中科院广州电子智能制造事业部的形创Creaform战略级代理商证书: Creaform 形创是便携式三维测量解决方案和工程服务领…

[Python进阶] 消息框、弹窗:tkinter库

6.16 消息框、弹窗:tkinter 6.16.1 前言 应用程序中的提示信息处理程序是非常重要的部分,用户要知道他输入的资料到底正不正确,或者是应用程序有一些提示信息要告诉用户,都必须通过提示信息处理程序来显示适当的信息&#xff0c…

NPDP产品经理证书是什么行业的证书?

NPDP是一个跨行业的证书,它适用于各种不同类型和规模的组织。无论是制造业、服务业还是科技领域,都可以从NPDP认证中获益。 1. 制造业: 制造业涉及大量的产品开发和创新活动。从汽车制造到电子设备制造,从家居用品到航天航空&…

【vue3】子传父-事件总线-mitt(子组件派发事件,父组件接收事件和传递的参数)

安装库&#xff1a;cnpm install mitt 封装 eventbus.ts&#xff1a; src->utils->eventbus.ts //eventbus.tsimport mitt from mittconst emitter mitt()export default emitter使用 B2.vue&#xff1a; //B2.vue <template><div class"aa">…

idea + Docker-Compose 实现自动化打包部署(仅限测试环境)

一、修改docker.service文件&#xff0c;添加监听端口 vi /usr/lib/systemd/system/docker.service ExecStart/usr/bin/dockerd -H fd:// --containerd/run/containerd/containerd.sock -H tcp://0.0.0.0:2375 -H unix://var/run/docker.sock重启docker服务 systemctl daemo…

邦盛科技冲刺上市“冷思考”:身处红线边缘,达摩克利斯之剑高悬

撰稿|行星 来源|贝多财经 近日&#xff0c;浙江邦盛科技股份有限公司&#xff08;下称“邦盛科技”&#xff09;因发行上市申请文件中记载的财务资料已过有效期&#xff0c;需要补充提交。根据相关规定&#xff0c;上海证券交易所中止其发行上市审核。 据介绍&#xff0c;邦…

下载zip源码并使用交叉编译工具进行编译

可以按照以下步骤进行操作&#xff1a; 确保已经设置好交叉编译工具链并将其添加到系统的环境变量中。 打开终端&#xff0c;进入你想要存放源码的目录&#xff1a; cd /path/to/source/directory使用git命令克隆zip库的源码仓库&#xff1a; git clone https://github.com/ni…

量变引起质变:安卓改多了,就是自己的OS

最近小米也发布了自己的OS&#xff0c;其他也有厂家跟进。这是自华为鸿蒙之后&#xff0c;大家都说自己开发OS。对此&#xff0c;也是有很多争论的。 有人说&#xff0c;这些东西不都是安卓套壳或者改名吗&#xff1f;怎么就变成了自己的OS&#xff1f;这种观点对不对呢&#x…

StartCoroutine/yield 返回模式在 Unity 中到底如何工作?

Unity3D协程详解 游戏中的许多过程都是在多个帧的过程中发生的。你有“密集”的过程&#xff0c;比如寻路&#xff0c;每个帧都努力工作&#xff0c;但会分成多个帧&#xff0c;以免对帧速率产生太大影响。您拥有“稀疏”进程&#xff0c;例如游戏触发器&#xff0c;它们在大多…

Shopee、Lazada卖家不得不看的提升销量技巧,自养号测评打造权重

近年来&#xff0c;大部分虾皮、Lazada卖家开始通过测评补单的方式来提升店铺权重和产品排名&#xff0c;以吸引更多流量。这种方式可以有效提高产品的销售转化率&#xff0c;对店铺的运营起到推动作用。然而&#xff0c;测评补单并非简单的购买过程&#xff0c;其中涉及到许多…

干洗店预约下单管理系统收衣开单拍照必备软件

随着生活水平的提高和节奏的加快&#xff0c;商务人士的衣物越来越多&#xff0c;但精力和时间却越来越少。于是&#xff0c;干洗店应运而生&#xff0c;在中国&#xff0c;几乎所有的中心城市干洗店都门庭若市。若每人每月需要干洗一套服装&#xff0c;一个城市每月则需干洗50…

面试中经常问道的问题二

深入理解前端跨域方法和原理 前言 受浏览器同源策略的限制&#xff0c;本域的js不能操作其他域的页面对象&#xff08;比如DOM&#xff09;。但在安全限制的同时也给注入iframe或是ajax应用上带来了不少麻烦。所以我们要通过一些方法使本域的js能够操作其他域的页面对象或者使…

HTML5语义化标签 header 的详解

&#x1f31f;&#x1f31f;&#x1f31f; 专栏详解 &#x1f389; &#x1f389; &#x1f389; 欢迎来到前端开发之旅专栏&#xff01; 不管你是完全小白&#xff0c;还是有一点经验的开发者&#xff0c;在这里你会了解到最简单易懂的语言&#xff0c;与你分享有关前端技术和…

idea使用Alibaba Cloud Toolkit实现自动部署

在日常开发过程中&#xff0c;经常会使用到jenkins进行项目部署&#xff0c;但对一些小项目来说&#xff0c;这就过于复杂&#xff0c;就可以使用Alibaba Cloud Toolkit插件配合shell脚本进行项目的远程部署工作。 一、下载Alibaba Cloud Toolkit插件 二、服务器安装nohup 1.…

Kafka - 消息队列的两种模式

文章目录 消息队列的两种模式点对点模式&#xff08;Point-to-Point&#xff0c;P2P&#xff09;发布/订阅模式&#xff08;Publish/Subscribe&#xff0c;Pub/Sub&#xff09; 小结 消息队列的两种模式 消息队列确实可以根据消息传递的模式分为 点对点模式发布/订阅模式 这两…