竞赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Yolov5算法
  • 4 数据处理和训练
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **深度学习卫星遥感图像检测与识别 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

近年来,世界各国大力发展航空航天事业,卫星图像的目标检测在各行各业的应用得到了快速的发展,特别是军事侦查、海洋船舶和渔业管理等领域。由于卫星图像中有价值的信息极少,卫星图像数据规模巨大,这迫切需要智能辅助工具帮助相关从业人员从卫星图像中高效获取精确直观的信息。
本文利用深度学习技术,基于Yolov5算法框架实现卫星图像目标检测问题。

2 实现效果

实现效果如下:可以看出对船只、飞机等识别效果还是很好的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5算法

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
相关代码

class Yolo(object):def __init__(self, weights_file, verbose=True):self.verbose = verbose# detection paramsself.S = 7  # cell sizeself.B = 2  # boxes_per_cellself.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle","bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant","sheep", "sofa", "train","tvmonitor"]self.C = len(self.classes) # number of classes# offset for box center (top left point of each cell)self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),[self.B, self.S, self.S]), [1, 2, 0])self.y_offset = np.transpose(self.x_offset, [1, 0, 2])self.threshold = 0.2  # confidence scores threholdself.iou_threshold = 0.4#  the maximum number of boxes to be selected by non max suppressionself.max_output_size = 10self.sess = tf.Session()self._build_net()self._build_detector()self._load_weights(weights_file)

4 数据处理和训练

数据集
本项目使用 DOTA 数据集,原数据集中待检测的目标如下
在这里插入图片描述
原数据集中的标签如下
在这里插入图片描述
图像分割和尺寸调整
YOLO 模型的图像输入尺寸是固定的,由于原数据集中的图像尺寸不一,我们将原数据集中的图像按目标分布的位置分割成一个个包含目标的子图,并将每个子图尺寸调整为
1024×1024。分割前后的图像如所示。
分割前
在这里插入图片描述
分割后
在这里插入图片描述
模型训练
在 yolov5/ 目录,运行 train.py 文件开始训练:

python train.py --weight weights/yolov5s.pt --batch 16 --epochs 100 --cache

其中的参数说明:

  • weight:使用的预训练权重,这里示范使用的是 yolov5s 模型的预训练权重
  • batch:mini-batch 的大小,这里使用 16
  • epochs:训练的迭代次数,这里我们训练 100 个 epoch
  • cache:使用数据缓存,加速训练进程

相关代码

#部分代码
def train(hyp, opt, device, tb_writer=None):logger.info(f'Hyperparameters {hyp}')log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve'  # logging directorywdir = log_dir / 'weights'  # weights directoryos.makedirs(wdir, exist_ok=True)last = wdir / 'last.pt'best = wdir / 'best.pt'results_file = str(log_dir / 'results.txt')epochs, batch_size, total_batch_size, weights, rank = \opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank# Save run settingswith open(log_dir / 'hyp.yaml', 'w') as f:yaml.dump(hyp, f, sort_keys=False)with open(log_dir / 'opt.yaml', 'w') as f:yaml.dump(vars(opt), f, sort_keys=False)# Configurecuda = device.type != 'cpu'init_seeds(2 + rank)with open(opt.data) as f:data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dictwith torch_distributed_zero_first(rank):check_dataset(data_dict)  # checktrain_path = data_dict['train']test_path = data_dict['val']nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check# Modelpretrained = weights.endswith('.pt')if pretrained:with torch_distributed_zero_first(rank):attempt_download(weights)  # download if not found locallyckpt = torch.load(weights, map_location=device)  # load checkpointif 'anchors' in hyp and hyp['anchors']:ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchormodel = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # createexclude = ['anchor'] if opt.cfg else []  # exclude keysstate_dict = ckpt['model'].float().state_dict()  # to FP32state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersectmodel.load_state_dict(state_dict, strict=False)  # loadlogger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # reportelse:model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create# Freezefreeze = ['', ]  # parameter names to freeze (full or partial)if any(freeze):for k, v in model.named_parameters():if any(x in k for x in freeze):print('freezing %s' % k)v.requires_grad = False# Optimizernbs = 64  # nominal batch sizeaccumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizinghyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decaypg0, pg1, pg2 = [], [], []  # optimizer parameter groupsfor k, v in model.named_parameters():v.requires_grad = Trueif '.bias' in k:pg2.append(v)  # biaseselif '.weight' in k and '.bn' not in k:pg1.append(v)  # apply weight decayelse:pg0.append(v)  # all else

训练开始时的日志信息
在这里插入图片描述
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/118549.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图像处理入门 1(Introduction to image processing)

如何获得一张照片 (How to obtain a photo)? 每次看到一些光学设备的规格介绍的时候,一些专用名词,例如:等效焦距,曝光模式 等 让你一头雾水。爱学习的你一定十分好奇他们是什么意思。每次看到…

L2-026 小字辈 - java

L2-026 小字辈 时间限制 400 ms 内存限制 64 MB 题目描述: 本题给定一个庞大家族的家谱,要请你给出最小一辈的名单。 输入格式: 输入在第一行给出家族人口总数 N(不超过 100 000 的正整数) —— 简单起见&#xff0c…

vscode json文件添加注释报错

在vscode中创建json文件,想要注释一波时,发现报了个错:Comments are not permitted in JSON. (521),意思是JSON中不允许注释 以下为解决方法: 在vscode的右下角中找到这个,点击 在出现的弹窗中输入json wit…

封装一个PHP可控限速下载文件的方法

说明 实测下载后的文件与源文件哈希值一致,保证数据传输安全一致。如果下载到的文件每次都165KB左右,和源文件大小不符合,需要用IDE打开下载的文件,看看是否报致命错误,提示超过最大内存限制。这个与php.ini中的“mem…

Docker 深度清除镜像缓存 (overlay2)

Docker 深度清除镜像缓存 (overlay2) 一般情况下,运维清理镜像是通过命令 docker rm i 删除镜像的。但是这条命令不会删除docker build命令产生的缓存文件。 这个时候需要使用 docker system 的系列命令来做相关处理。 docker system --hel…

selenium4 元素定位

selenium4 9种元素定位 ID driver.find_element(By.ID,"kw")NAME driver.find_element(By.NAME,"tj_settingicon")CLASS_NAME driver.find_element(By.CLASS_NAME,"ipt_rec")TAG_NAME driver.find_element(By.TAG_NAME,"area")LINK_T…

python time 模块

时间的三种格式time模块中的其他函数时间三种格式之间的转化 一,时间的三种模块 在python中对于时间的描述存在三种格式:1,时间戳,2,时间结构体 3,按某种格式形式展示的字符串 1,时间戳 import time pr…

cola架构:有限状态机(FSM)源码分析

目录 0. cola状态机简述 1.cola状态机使用实例 2.cola状态机源码解析 2.1 语义模型源码 2.1.1 Condition和Action接口 2.1.2 State 2.1.3 Transition接口 2.1.4 StateMachine接口 2.2 Builder模式 2.2.1 StateMachine Builder模式 2.2.2 ExternalTransitionBuilder-…

Laplacian算子详解及例程

Laplacian算子是一种常用的边缘检测算法,它是通过对图像进行二阶微分来检测图像的边缘。Laplacian算子的优点是能够对不同方向的边缘进行检测,对于边缘的粗细和强度变化也比较敏感。 Laplacian算子的计算公式为: ∇f ∂f/∂x ∂f/∂y其中…

AUTOSAR汽车电子嵌入式编程精讲300篇-基于CAN总线的温度场测量装置的研究与设计

目录 前言 国内外研究现状 2 温度场测量装置的方案设计 2.1 技术指标

热搜榜:最热门的话题文本排行榜API接口

近年来,随着社交媒体的兴起,热门话题的数量和更新速度都在不断增加,因此热门话题排行榜的需求也越来越大。在这篇文章中,我们将探讨如何使用#热搜榜# API接口获取最热门的话题文本排行榜,并给出相关代码示例。 一、API…

Centos7 Linux系统下生成https的crt和key证书

linux下生成https的crt和key证书 步骤如下: x509证书一般会用到三类文,key,csr,crt Key 是私用密钥openssl格,通常是rsa算法。 Csr 是证书请求文件,用于申请证书。在制作csr文件的时,必须使…

电脑QQ如何录制视频文件?

听说QQ可以录制视频,还很方便,请问该如何录制呢?是需要先打开QQ才可以录制吗?还是可以直接使用快捷键进行录制呢?录制的质量又如何呢? 不要着急,既然都打开这篇文章看了,那小编今天…

苹果IOS安装IPA, plist形式 Safari 浏览器点击安装

快速链接 苹果开发者账号链接 网址: https://developer.apple.com/account 苹果应用上架链接 网址: https://appstoreconnect.apple.com/ 应用证书文件及打包 参考教程: 最新uniapp打包IOS详细步骤(2022) 证书在线制作工具 网址: https://app.121xuexi.…

【Javascript】通过浏览器书签构建与执行自动刷新脚本

0x00 前言 日常工作中,经常遇到需要时不时点一下刷新这样的事情(怪前端想不到写一个自动刷新) 但是…… 没有自动刷新按钮,在这页面手动点刷新还是太浪费时间了。 有时候懒得等了去做别的事情,过一小时回来刷新一下&a…

OpenText 安全取证软件——降低成本和风险的同时,简化电子取证流程

OpenText 安全取证软件,行业标准的数字调查解决方案,适用于各种规模和各种行业的组织 降低成本和复杂性 • 远程调查比轮流调查过程更有效 对结果持有信心 • 磁盘级可见性可以完成相关端点数据的搜索和收集 谨慎调查 • 完整的网络调查&#xf…

【Python机器学习】零基础掌握VotingRegressor集成学习

如何更准确地预测房价? 想象一下,你是一名房地产分析师,你的任务是预测一个小区的未来房价。这看似简单,但实际上,房价受到多种因素的影响,如地理位置、房屋面积、周围设施等。你可能会使用线性回归模型来进行预测,但是你会发现,尽管模型的准确性还可以,但还是存在一…

NPM-安装报错connect ETIMEDOUT

报错信息request to https://registry.npm.taobao.org/yarn failed, reason: connect ETIMEDOUT 解决方案: 1、npm set strict-ssl false 2、设置代理 npm config set proxy http://xxx:xxxopenproxy.ali.com:8080npm如何在安装的时候指定源 npm install -g yarn1.…

【Java集合类面试二十七】、谈谈CopyOnWriteArrayList的原理

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 面试官:谈谈CopyOnWriteArrayLi…

安科瑞电能计量管理系统

安科瑞 崔丽洁 随着国家电网改革政策的逐步推进和落实,Acrel-3000WEB电能管理解决方案运用互联网和大数据技术,为电力运维公司提供电能管理解决方案。该平台作为连接运维单位和用电企业的纽带,全方面监视用户配电系统的运行状态和电量数据&am…