简介
EventLoop.cc就相当于一个reactor,多线程之间的函数调用(用eventfd唤醒),epoll处理,超时队列处理,对channel的处理。运行loop的进程被称为IO线程,EventLoop提供了一些API确保相应函数在IO线程中调用,确保没有用互斥量保护的变量只能在IO线程中使用,也封装了超时队列的基本操作。
成员及属性解析
一个事件循环,注意,一个创建了EventLoop对象的线程是workloop线程
主要接口
loop
死循环,阻塞在Poller的poll函数,等待唤醒唤醒后执行ChannelList中每个Channel的回调最后执行任务队列中的Functor
runInLoop
在IO线程中执行用户回调Functor,若调用者非IO线程,则会调用queueInLoop
queueInLoop
当调用者并非当前EventLoop所在线程时,将Functor存入EventLoop的任务队列从而保证Functor由IO线程执行,这是线程安全的保证之一
updateChannel与removeChannel
核心中的核心,通过这个公有接口建立起Channel和Poller沟通的桥梁Channel通过这个接口向Poller注册或者移除自己的fd实现了Poller和Channel两端的解耦
核心实现:handleEvent
遍历所有的activeChannelList_,并依次执行这些Channel中注册的回调函数这个环节非常非常关键,是一切事件派发机制中回调执行的地方
主要成员
wakeupchannel_
通过eventfd唤醒的channel
EventLoop可以通过这个Channel唤醒自己执行定时任务
activeChannelList_
通过一次poll获得的所有发生事件的Channel指针列表
pendingFunctors_
所有非IO线程调用的用户回调都会存放在这个队列中,通过mutex互斥量保护
poller_
一个多路复用实例
源码剖析
EventLoop.h
#ifndef MUDUO_NET_EVENTLOOP_H
#define MUDUO_NET_EVENTLOOP_H#include <atomic>
#include <functional>
#include <vector>#include <boost/any.hpp>#include "muduo/base/Mutex.h"
#include "muduo/base/CurrentThread.h"
#include "muduo/base/Timestamp.h"
#include "muduo/net/Callbacks.h"
#include "muduo/net/TimerId.h"namespace muduo
{
namespace net
{class Channel;
class Poller;
class TimerQueue;///
/// Reactor, at most one per thread.
///
/// This is an interface class, so don't expose too much details.
class EventLoop : noncopyable
{public:typedef std::function<void()> Functor;EventLoop();~EventLoop(); // force out-line dtor, for std::unique_ptr members.//开启事件循环void loop();//退出事件循环void quit();//轮询返回的时间,通常意味着数据到达。Timestamp pollReturnTime() const { return pollReturnTime_; }int64_t iteration() const { return iteration_; }/// Runs callback immediately in the loop thread./// It wakes up the loop, and run the cb./// If in the same loop thread, cb is run within the function./// Safe to call from other threads.///在当前loop中执行cbvoid runInLoop(Functor cb);/// Queues callback in the loop thread./// Runs after finish pooling./// Safe to call from other threads.///将cb放入队列中,唤醒loop所在的线程执行void queueInLoop(Functor cb);size_t queueSize() const;// timers////// Runs callback at 'time'./// Safe to call from other threads.///TimerId runAt(Timestamp time, TimerCallback cb);////// Runs callback after @c delay seconds./// Safe to call from other threads.///TimerId runAfter(double delay, TimerCallback cb);////// Runs callback every @c interval seconds./// Safe to call from other threads.///TimerId runEvery(double interval, TimerCallback cb);////// Cancels the timer./// Safe to call from other threads.///void cancel(TimerId timerId);// internal usage//唤醒loop所在的线程void wakeup();//调用poller的方法void updateChannel(Channel* channel);void removeChannel(Channel* channel);bool hasChannel(Channel* channel);// pid_t threadId() const { return threadId_; }void assertInLoopThread(){if (!isInLoopThread()){abortNotInLoopThread();}}//判断eventloop对象是否在自己的线程bool isInLoopThread() const { return threadId_ == CurrentThread::tid(); }// bool callingPendingFunctors() const { return callingPendingFunctors_; }bool eventHandling() const { return eventHandling_; }void setContext(const boost::any& context){ context_ = context; }const boost::any& getContext() const{ return context_; }boost::any* getMutableContext(){ return &context_; }static EventLoop* getEventLoopOfCurrentThread();private:void abortNotInLoopThread();void handleRead(); // waked upvoid doPendingFunctors();//在loop一次后执行pendingFunctors_中的所有方法(会清空队列)void printActiveChannels() const; // DEBUGtypedef std::vector<Channel*> ChannelList;bool looping_; /* atomic */std::atomic<bool> quit_;//标识loop的退出bool eventHandling_; /* atomic *///标识当前loop是否需要有执行的回调操作bool callingPendingFunctors_; /* atomic */int64_t iteration_;const pid_t threadId_;//记录thread所在的线程pidTimestamp pollReturnTime_;std::unique_ptr<Poller> poller_;std::unique_ptr<TimerQueue> timerQueue_;//主要作用,当mainLoop获取到一个accept新用户的channel,通过轮询算法选择一个subloop,通过该成员唤醒subloop处理,使用eventfdint wakeupFd_;// unlike in TimerQueue, which is an internal class,// we don't expose Channel to client.std::unique_ptr<Channel> wakeupChannel_;boost::any context_;// scratch variablesChannelList activeChannels_;Channel* currentActiveChannel_;mutable MutexLock mutex_;//保证pendingFunctors_的线程安全操作std::vector<Functor> pendingFunctors_ GUARDED_BY(mutex_);//存储loop需要执行的所有操作
};} // namespace net
} // namespace muduo#endif // MUDUO_NET_EVENTLOOP_H
eventloop.cc
// Copyright 2010, Shuo Chen. All rights reserved.
// http://code.google.com/p/muduo/
//
// Use of this source code is governed by a BSD-style license
// that can be found in the License file.// Author: Shuo Chen (chenshuo at chenshuo dot com)#include "muduo/net/EventLoop.h"#include "muduo/base/Logging.h"
#include "muduo/base/Mutex.h"
#include "muduo/net/Channel.h"
#include "muduo/net/Poller.h"
#include "muduo/net/SocketsOps.h"
#include "muduo/net/TimerQueue.h"#include <algorithm>#include <signal.h>
#include <sys/eventfd.h>
#include <unistd.h>using namespace muduo;
using namespace muduo::net;namespace
{
//保证一个线程只有一个loop
__thread EventLoop* t_loopInThisThread = 0;
//poll超时时间
const int kPollTimeMs = 10000;int createEventfd()
{int evtfd = ::eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);if (evtfd < 0){LOG_SYSERR << "Failed in eventfd";abort();}return evtfd;
}#pragma GCC diagnostic ignored "-Wold-style-cast"
class IgnoreSigPipe
{public:IgnoreSigPipe(){::signal(SIGPIPE, SIG_IGN);// LOG_TRACE << "Ignore SIGPIPE";}
};
#pragma GCC diagnostic error "-Wold-style-cast"IgnoreSigPipe initObj;
} // namespaceEventLoop* EventLoop::getEventLoopOfCurrentThread()
{return t_loopInThisThread;
}//创建了EventLoop对象的线程称为IO线程
EventLoop::EventLoop(): looping_(false), //判断是否在loopquit_(false), //判断是否退出的标志eventHandling_(false), //处理handevent的标志callingPendingFunctors_(false), //判断当前是不是在执行方法队列iteration_(0),threadId_(CurrentThread::tid()), //当前线程IDpoller_(Poller::newDefaultPoller(this)), //创建一个 poll 或 epoll 对象timerQueue_(new TimerQueue(this)), //创建一个计时器wakeupFd_(createEventfd()), //发送唤醒loop消息的描述符,随便写点消息即可唤醒wakeupChannel_(new Channel(this, wakeupFd_)), //wakeupChannel_用来自己给自己通知的一个通道,该通道会纳入到poller来管理currentActiveChannel_(NULL) //当前活跃的channel链表指针
{LOG_DEBUG << "EventLoop created " << this << " in thread " << threadId_;if (t_loopInThisThread) //判断是否是本线程的loop,是一个loop类型的指针{LOG_FATAL << "Another EventLoop " << t_loopInThisThread<< " exists in this thread " << threadId_; //用LOG_FATAL终止abort它}else{t_loopInThisThread = this; //this赋给线程局部数据指针}//设定wakeupChannel的回调函数,即EventLoop自己的的handleRead函数wakeupChannel_->setReadCallback(std::bind(&EventLoop::handleRead, this)); //channel->handleEventWithGuard会调用到handleRead// we are always reading the wakeupfdwakeupChannel_->enableReading(); //注册wakeupFd_到poller
}EventLoop::~EventLoop()
{LOG_DEBUG << "EventLoop " << this << " of thread " << threadId_<< " destructs in thread " << CurrentThread::tid();wakeupChannel_->disableAll(); //从监听队列fd里移除wakeupChannel_->remove(); //移除epoll里面的channel::close(wakeupFd_);t_loopInThisThread = NULL;
}void EventLoop::loop()
{assert(!looping_);assertInLoopThread(); //事件循环必须在IO线程中,即创建该evenloop的线程looping_ = true; //是否正在循环quit_ = false; // FIXME: what if someone calls quit() before loop() ?LOG_TRACE << "EventLoop " << this << " start looping";while (!quit_){activeChannels_.clear(); //activeChannels_是一个vector//等待io复用函数返回pollReturnTime_ = poller_->poll(kPollTimeMs, &activeChannels_); //调用poll返回活动的事件,有可能是唤醒返回的++iteration_;//根据设置的日志等级打印跟踪信息if (Logger::logLevel() <= Logger::TRACE){printActiveChannels();}// TODO sort channel by priority 按优先级排序//处理IO事件eventHandling_ = true;for (Channel* channel : activeChannels_) //遍历通道来进行处理{currentActiveChannel_ = channel;currentActiveChannel_->handleEvent(pollReturnTime_); //pollReturnTime_是poll返回的时刻}currentActiveChannel_ = NULL; //处理完了赋空eventHandling_ = false;//执行方法队列中的方法[方法队列functors,我们可以跨线程的往里面添加新的方法,这些方法会在处理完io事件后执行]doPendingFunctors(); //这个设计也能够进行计算任务}LOG_TRACE << "EventLoop " << this << " stop looping";looping_ = false;
}void EventLoop::quit()
{quit_ = true; //设置退出标志// There is a chance that loop() just executes while(!quit_) and exits,// then EventLoop destructs, then we are accessing an invalid object.// Can be fixed using mutex_ in both places.if (!isInLoopThread()){wakeup(); //唤醒}
}//在I/O线程中调用某个函数
//实际上就是如果是I/O线程主动调用该函数想要执行,那就同步执行该函数。如果是其他线程施加给I/O线程的任务,那么其他线程就需要把回调函数加入I/O线程的队列,等待异步执行
void EventLoop::runInLoop(Functor cb)
{if (isInLoopThread()) //判断是否是本线程的loop{cb();}else{queueInLoop(std::move(cb)); }
}void EventLoop::queueInLoop(Functor cb)//把方法添加到队列中,该方法会出现在多个线程中,操作要加锁
{{MutexLockGuard lock(mutex_);pendingFunctors_.push_back(std::move(cb));//std::function支持移动初始化,所以这里用move提升性能。(减少一次拷贝)}if (!isInLoopThread() || callingPendingFunctors_)//如果调用的queneInLoop的线程不是IO线程,那么唤醒{//如果在IO线程调用queueInLoop(),而此时正在调用pending functor,由于doPendingFunctors()调用的Functor可能再次调用queueInLoop(cb),这是queueInLoop()就必须wakeup(),否则新增的cb可能就不能及时调用了wakeup();}
}size_t EventLoop::queueSize() const
{MutexLockGuard lock(mutex_);return pendingFunctors_.size();
}TimerId EventLoop::runAt(Timestamp time, TimerCallback cb)//在指定的时间调用callback
{return timerQueue_->addTimer(std::move(cb), time, 0.0);
}TimerId EventLoop::runAfter(double delay, TimerCallback cb)//等一段时间调用callback
{Timestamp time(addTime(Timestamp::now(), delay));//微妙return runAt(time, std::move(cb));
}TimerId EventLoop::runEvery(double interval, TimerCallback cb)//以固定的间隔反复的调用callback
{Timestamp time(addTime(Timestamp::now(), interval));return timerQueue_->addTimer(std::move(cb), time, interval);
}void EventLoop::cancel(TimerId timerId) //取消timer
{return timerQueue_->cancel(timerId);
}void EventLoop::updateChannel(Channel* channel) //更新通道,用epoll_ctl更新fd
{assert(channel->ownerLoop() == this); //判断channel的loop是不是当前loopassertInLoopThread(); poller_->updateChannel(channel);
}void EventLoop::removeChannel(Channel* channel) //移除通道,将channel从ChannelMap移除并EPOLL_CTL_DEL掉fd
{assert(channel->ownerLoop() == this); //表示当前的loopassertInLoopThread();if (eventHandling_) //正在处理channel{assert(currentActiveChannel_ == channel || //当前的channel或不是活跃的channelstd::find(activeChannels_.begin(), activeChannels_.end(), channel) == activeChannels_.end());}poller_->removeChannel(channel);
}bool EventLoop::hasChannel(Channel* channel)//查找事件分发器是否在channels_中
{assert(channel->ownerLoop() == this);assertInLoopThread();return poller_->hasChannel(channel);
}void EventLoop::abortNotInLoopThread()
{LOG_FATAL << "EventLoop::abortNotInLoopThread - EventLoop " << this<< " was created in threadId_ = " << threadId_<< ", current thread id = " << CurrentThread::tid();
}void EventLoop::wakeup()
{uint64_t one = 1;ssize_t n = sockets::write(wakeupFd_, &one, sizeof one); //随便写点数据进去就唤醒了if (n != sizeof one){LOG_ERROR << "EventLoop::wakeup() writes " << n << " bytes instead of 8";}
}void EventLoop::handleRead() //读取唤醒的数据
{uint64_t one = 1;ssize_t n = sockets::read(wakeupFd_, &one, sizeof one);if (n != sizeof one){LOG_ERROR << "EventLoop::handleRead() reads " << n << " bytes instead of 8";}
}// 1. 不是简单的在临界区内依次调用functor,而是把回调列表swap到functors中,这一方面减小了
//临界区的长度,意味着不会阻塞其他线程的queueInLoop(),另一方面也避免了死锁(因为Functor可能再次调用quueInLoop)
// 2. 由于doPendingFunctors()调用的Functor可能再次调用queueInLoop(cb),这是queueInLoop()就必须wakeup(),否则新增的cb可能就不能及时调用了
// 3. muduo没有反复执行doPendingFunctors()直到pendingFunctors为空,这是有意的,否则I/O线程可能陷入死循环,无法处理I/O事件
void EventLoop::doPendingFunctors()
{std::vector<Functor> functors;callingPendingFunctors_ = true;//注意这里的临界区,这里使用了一个栈上变量functors和pendingFunctors交换{MutexLockGuard lock(mutex_);functors.swap(pendingFunctors_); //pendingFunctors_是存放Functor的vector}//此处其它线程就可以往pendingFunctors添加任务for (const Functor& functor : functors){functor();}callingPendingFunctors_ = false;
}void EventLoop::printActiveChannels() const
{for (const Channel* channel : activeChannels_){LOG_TRACE << "{" << channel->reventsToString() << "} ";}
}