python测试开发面试常考题:装饰器

目录

简介

应用

第一类对象

装饰器

描述器descriptor

资料获取方法


简介

Python 装饰器是一个可调用的(函数、方法或类),它获得一个函数对象 func_in 作为输入,并返回另一函数对象 func_out。它用于扩展函数、方法或类的行为。

装饰器模式通常用于扩展对象的功能。在日常生活中,这种扩展的例子有:在枪上加一个消音器,使用不同的相机镜头等等。

image

Django框架中有大量装饰器

  • 限制某些HTTP请求对视图的访问
  • 控制
  • 按单个视图控制压缩
  • 基于特定HTTP请求头控制缓存

Pyramid框架和Zope应用服务器也使用装饰器来实现各种目标。

  • 将函数注册为事件订阅者
  • 以特定权限保护一个方法
  • 实现适配器模式

应用

装饰器模式在跨领域方面大放异彩:

  • 数据验证
  • 缓存
  • 日志
  • 监控
  • 调试
  • 业务规则
  • 加密

使用修饰器模式的另一个常见例子是(Graphical User Interface,GUI)工具集。在GUI工具集中,我们希望能够将一些特性,比如边框、阴影、颜色以及滚屏,添加到组件/控件。

第一类对象

装饰器是Python中非常强大和有用的工具,它允许程序员修改函数或类的行为。装饰器允许我们封装另一个函数,以扩展被封装函数的行为,而不需要修改它。但在深入研究装饰器之前,让我们先了解一些概念,这些概念在学习装饰器时将会很有用。

在Python中,函数是第一类对象,这意味着 Python 中的函数可以作为参数使用或传递。

第一类函数的属性:

  • 函数是对象类型的实例
  • 可以将函数存储在变量
  • 可以将函数作为参数传递给其他函数
  • 可以从函数中返回函数。
  • 可以将它们存储在数据结构中,如哈希表、列表、...

例1:将函数视为对象。

def shout(text):return text.upper()print(shout('Hello'))yell = shoutprint(yell('Hello'))

输出:

HELLO
HELLO

例2:将函数作为参数传递

def shout(text):return text.upper()def whisper(text):return text.lower()def greet(func):# storing the function in a variablegreeting = func("""Hi, I am created by a function passed as an argument.""")print (greeting)greet(shout)
greet(whisper)

输出:

HI, I AM CREATED BY A FUNCTION PASSED AS AN ARGUMENT.
hi, i am created by a function passed as an argument.

例3: 从函数中返回函数。

def shout(text):return text.upper()def whisper(text):return text.lower()def greet(func):# storing the function in a variablegreeting = func("""Hi, I am created by a function passed as an argument.""")print (greeting)greet(shout)
greet(whisper)

输出:

25

装饰器

如上所述,装饰器是用来修改函数或类的行为的。在装饰器中,函数被当作函数的参数,然后在封装函数中调用。

  • 装饰器的语法:
@gfg_decorator
def hello_decorator():print("Gfg")'''Above code is equivalent to -def hello_decorator():print("Gfg")hello_decorator = gfg_decorator(hello_decorator)'''

gfg_decorator 是一个可调用的函数,它将在另一个可调用的函数hello_decorator函数上面添加一些代码,并返回封装函数。

  • 装饰器可以修改行为:

# defining a decorator
def hello_decorator(func):# inner1 is a Wrapper function in# which the argument is called# inner function can access the outer local# functions like in this case "func"def inner1():print("Hello, this is before function execution")# calling the actual function now# inside the wrapper function.func()print("This is after function execution")return inner1# defining a function, to be called inside wrapper
def function_to_be_used():print("This is inside the function !!")# passing 'function_to_be_used' inside the
# decorator to control its behaviour
function_to_be_used = hello_decorator(function_to_be_used)# calling the function
function_to_be_used()

输出:

Hello, this is before function execution
This is inside the function !!
This is after function execution

让我们跳到另一个例子,在这个例子中,我们可以用装饰器轻松地找出函数的执行时间。

import time
import math
import functools# decorator to calculate duration
# taken by any function.
def calculate_time(func):# added arguments inside the inner1,# if function takes any arguments,# can be added like this.@functools.wraps(func) # 支持内省,一般可以不用,多用于文档def inner1(*args, **kwargs):# storing time before function executionbegin = time.time()func(*args, **kwargs)# storing time after function executionend = time.time()print("Total time taken in : ", func.__name__, end - begin)return inner1# this can be added to any function present,
# in this case to calculate a factorial
@calculate_time
def factorial(num):# sleep 2 seconds because it takes very less time# so that you can see the actual differencetime.sleep(2)print(math.factorial(num))# calling the function.
factorial(10)

@functools.wraps装饰器使用函数functools.update_wrapper()来更新特殊属性,如__name__和__doc__,这些属性在自省中使用。

输出:

3628800
Total time taken in :  factorial 2.0061802864074707
  • 如果函数有返回或有参数传递给函数,怎么办?

在上面所有的例子中,函数都没有返回任何东西,所以没有问题,但人们可能需要返回的值。

def hello_decorator(func):def inner1(*args, **kwargs):print("before Execution")# getting the returned valuereturned_value = func(*args, **kwargs)print("after Execution")# returning the value to the original framereturn returned_valuereturn inner1# adding decorator to the function
@hello_decorator
def sum_two_numbers(a, b):print("Inside the function")return a + ba, b = 1, 2# getting the value through return of the function
print("Sum =", sum_two_numbers(a, b))

输出:

before Execution
Inside the function
after Execution
Sum = 3

内部函数接收的参数是*args和**kwargs,这意味着可以传递任何长度的位置参数的元组或关键字参数的字典。这使得它成为通用的装饰器,可以装饰具有任何数量参数的函数。

  • 链式装饰器

链式装饰器是指用多个装饰器来装饰函数。

# code for testing decorator chaining
def decor1(func):def inner():x = func()return x * xreturn innerdef decor(func):def inner():x = func()return 2 * xreturn inner@decor1
@decor
def num():return 10@decor
@decor1
def num2():return 10print(num())
print(num2())

输出

400
200

上面的例子类似于调用函数---

decor1(decor(num))
decor(decor1(num2))

一些常用的装饰器在 Python 中甚至是内建的,它们是 @classmethod, @staticmethod, 和 @property。@classmethod 和 @staticmethod 装饰器用于定义类命名空间中的方法,这些方法与该类的特定实例没有关系。@property装饰器是用来定制类属性的getters和setters的。

  • 类装饰器

在 Python 3.7 中的新的 dataclasses 模块中完成:

from decorators import debug, do_twice@debug
@do_twice
def greet(name):print(f"Hello {name}")

语法的含义与函数装饰器相似。你可以通过写PlayingCard = dataclass(PlayingCard)来进行装饰。

类装饰器的一个常见用途是作为元类的一些使用情况的更简单的替代。

编写一个类装饰器与编写一个函数装饰器非常相似。唯一的区别是,装饰器将接收类而不是函数作为参数。事实上,你在上面看到的所有装饰器都可以作为类装饰器工作。

  • 带参数与不带参数的装饰器
def repeat(_func=None, *, num_times=2):def decorator_repeat(func):@functools.wraps(func)def wrapper_repeat(*args, **kwargs):for _ in range(num_times):value = func(*args, **kwargs)return valuereturn wrapper_repeatif _func is None:return decorator_repeatelse:return decorator_repeat(_func)

使用functools.partial也可达到类似效果。

以下是slowdown的演进版本

import functools
import timedef slow_down(_func=None, *, rate=1):"""Sleep given amount of seconds before calling the function"""def decorator_slow_down(func):@functools.wraps(func)def wrapper_slow_down(*args, **kwargs):time.sleep(rate)return func(*args, **kwargs)return wrapper_slow_downif _func is None:return decorator_slow_downelse:return decorator_slow_down(_func)
  • 有状态的装饰器
import functoolsdef count_calls(func):@functools.wraps(func)def wrapper_count_calls(*args, **kwargs):wrapper_count_calls.num_calls += 1print(f"Call {wrapper_count_calls.num_calls} of {func.__name__!r}")return func(*args, **kwargs)wrapper_count_calls.num_calls = 0return wrapper_count_calls@count_calls
def say_whee():print("Whee!")

对函数的调用次数--存储在包装函数的函数属性 .num_calls 中。下面是使用它的效果:

>>> say_whee()
Call 1 of 'say_whee'
Whee!>>> say_whee()
Call 2 of 'say_whee'
Whee!>>> say_whee.num_calls
2

维护状态的典型方法是使用类装饰器。

import functoolsclass CountCalls:def __init__(self, func):functools.update_wrapper(self, func)self.func = funcself.num_calls = 0def __call__(self, *args, **kwargs):self.num_calls += 1print(f"Call {self.num_calls} of {self.func.__name__!r}")return self.func(*args, **kwargs)@CountCalls
def say_whee():print("Whee!")
  • 单例模式

单例是只有一个实例的类。比如 None、True 和 False,可以使用 is 关键字来比较 None。

import functoolsdef singleton(cls):"""Make a class a Singleton class (only one instance)"""@functools.wraps(cls)def wrapper_singleton(*args, **kwargs):if not wrapper_singleton.instance:wrapper_singleton.instance = cls(*args, **kwargs)return wrapper_singleton.instancewrapper_singleton.instance = Nonereturn wrapper_singleton@singleton
class TheOne:pass

如你所见,这个类装饰器与我们的函数装饰器遵循相同的模板。唯一的区别是,我们使用 cls 而不是 func 作为参数名,以表明它是类装饰器。

让我们看看它是否有效:

>>> first_one = TheOne()
>>> another_one = TheOne()>>> id(first_one)
140094218762280>>> id(another_one)
140094218762280>>> first_one is another_one
True

注意:在Python中,单例其实并不像其他语言那样经常使用,通常用全局变量来实现更好。

  • 缓存返回值

装饰器可以为缓存和备忘提供一个很好的机制。作为一个例子,让我们看一下斐波那契数列的递归定义:

import functools
from decorators import count_callsdef cache(func):"""Keep a cache of previous function calls"""@functools.wraps(func)def wrapper_cache(*args, **kwargs):cache_key = args + tuple(kwargs.items())if cache_key not in wrapper_cache.cache:wrapper_cache.cache[cache_key] = func(*args, **kwargs)return wrapper_cache.cache[cache_key]wrapper_cache.cache = dict()return wrapper_cache@cache
@count_calls
def fibonacci(num):if num < 2:return numreturn fibonacci(num - 1) + fibonacci(num - 2)

在标准库中,最近使用最少的缓存(LRU)可作为 @functools.lru_cache。

这个装饰器比你上面看到的那个有更多的功能。你应该使用@functools.lru_cache而不是写你自己的缓存装饰器:

import functools@functools.lru_cache(maxsize=4)
def fibonacci(num):print(f"Calculating fibonacci({num})")if num < 2:return numreturn fibonacci(num - 1) + fibonacci(num - 2)

maxsize参数指定了多少个最近的调用被缓存。默认值是128,但你可以指定maxsize=None来缓存所有函数调用。然而,要注意的是,如果你要缓存许多大的对象,这可能会导致内存问题。

描述器descriptor

任何定义了 __get__(), __set__() 或 __delete__() 方法的对象。当类属性为描述器时,它的特殊绑定行为就会在属性查找时被触发。通常情况下,使用 a.b 来获取、设置或删除属性时会在 a 的类字典中查找名称为 b 的对象,但如果 b 是描述器,则会调用对应的描述器方法。理解描述器的概念是更深层次理解 Python 的关键,因为这是许多重要特性的基础,包括函数、方法、属性、类方法、静态方法以及对超类的引用等等。

有关描述符的方法的详情可参看 实现描述器。

class property(fget=None, fset=None, fdel=None, doc=None)

fget 是获取属性值的函数。 fset 是用于设置属性值的函数。 fdel 是用于删除属性值的函数。并且 doc 为属性对象创建文档字符串。

class C():def __init__(self):self._x = Nonedef getx(self):return self._xdef setx(self, value):self._x = valuedef delx(self):del self._xx = property(getx, setx, delx, "I'm the 'x' property.")demo = C()
demo.x = 5
print(demo.x)
print(demo.getx())

执行结果

5
5

更快捷的方式:

class C():def __init__(self):self._x = None@propertydef x(self):"""I'm the 'x' property."""return self._x@x.setterdef x(self, value):self._x = value@x.deleterdef x(self):del self._xdemo = C()
demo.x = 5
print(demo.x)

@property 装饰器会将 x() 方法转化为同名的只读属性的 "getter",并将 x的文档字符串设置为 "I'm the 'x' property."

执行结果

5

资料获取方法

【留言777】

各位想获取源码等教程资料的朋友请点赞 + 评论 + 收藏,三连!

三连之后我会在评论区挨个私信发给你们~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/11805.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习笔记】[ZJOI2019] 开关

之前没认真学 F W T FWT FWT可惜了&#x1f605; 首先要做过这道题 [AGC034F] RNG and XOR 。 考虑 I F W T IFWT IFWT算法的本质&#x1f914; 之前我们注意到将 k k k的顺序调换并不会影响结果&#xff0c;也就是说只要做一遍 F W T FWT FWT&#xff0c;然后再除以 2 n 2^…

【数据结构】实验十一:图

实验十一 图 一、实验目的与要求 1&#xff09;掌握图的存储表示与操作实现。 2&#xff09;掌握图的连通性及其应用。 二、 实验内容 1.用邻接表存储一个图形结构&#xff0c;并计算每个顶点的度。 2. 采用深度和广度优先搜索算法&#xff0c;遍历上述这张图&#xff0c;…

vue 实现拖拽效果

实现方式&#xff1a;使用自定义指令可以实现多个面板拖拽互不影响 1.自定义指令 js directives: {// 拖拽drag(el) {el.onmousedown function (e) {let x e.pageX - el.offsetLeftlet y e.pageY - el.offsetTopdocument.onmousemove function (e) {el.style.left e.pag…

placeholder样式自定义(uniapp 微信小程序、h5)

一、使用uniapp开发 ①第一种方式&#xff1a;&#xff08;写在行内&#xff09; <input type"text" placeholder"姓名" placeholder-style"font-size:28rpx;color:#999999;" />②第二种方式&#xff1a; &#xff08;给input加上placeho…

《向量数据库指南》:向量数据库Pinecone如何集成数据湖

目录 为什么选择Databricks? 为什么选择Pinecone? 设置Spark集群 环境设置 将数据集加载到分区中 创建将文本转换为嵌入的函数 将UDF应用于数据 更新嵌入 摘要 使用Databricks和Pinecone在规模上创建和索引向量嵌入 建立在Apache Spark之上的Databricks是一个强大的…

【期末课程设计】学生成绩管理系统

因其独特&#xff0c;因其始终如一 文章目录 一、学生成绩管理系统介绍 二、学生成绩管理系统设计思路 三、源代码 1. test.c 2. Student Management System.c 3.Stu_System.c 4.Teacher.c 5.Student Management System.h 前言&#xff1a; 学生成绩管理系统含教师…

什么是Maven,Maven的概述及基本使用

MAVEN 一、Maven简介1.1、Maven概述1.2、Maven仓库1.3项目获取jar包过程 二、Maven使用2.1Maven安装配置2.1.1配置环境变量2.1.2配置本地仓库2.1.3配置阿里云私服 2.2Maven基本使用2.2.1Maven常用指令2.2.2Maven生命周期 总结 一、Maven简介 Apache Maven是一个项目管理和构建…

STM32 I2C OVR 错误

一、问题 STM32 I2C 用作从机时&#xff0c;开启如下中断并启用 callback 回调函数。 每一次复位后&#xff0c;从机都可以正常触发地址匹配中断ADDR&#xff0c;之后在该中断的回调函数中启用接收中断去收取数据时&#xff0c;却无法进入RXNE中断&#xff0c;而是触发了 OVR …

<C语言> 动态内存管理

1.动态内存函数 为什么存在动态内存分配&#xff1f; int main(){int num 10; //向栈空间申请4个字节int arr[10]; //向栈空间申请了40个字节return 0; }上述的开辟空间的方式有两个特点&#xff1a; 空间开辟大小是固定的。数组在申明的时候&#xff0c;必须指定数组的…

自然语言处理NLP介绍——NLP简介

目录 内容先进性说明内容大纲概要云服务器的使用 内容先进性说明 内容大纲概要 云服务器的使用

githack的安装步骤+一次错误体验

一.githack的安装步骤 1.要在Kali Linux上安装GitHack工具&#xff0c;您可以按照以下步骤操作&#xff1a; 打开终端并使用以下命令克隆GitHack存储库&#xff1a; git clone https://github.com/lijiejie/GitHack.git2.进入GitHack目录&#xff1a; cd GitHack3.安装依赖项…

一种分解多种信号模式非线性线性调频的方法研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

JVM-Cpu飙升排查及解决

https://blog.csdn.net/m0_37542440/article/details/123679011 1. 问题情况 在服务器上执行某个任务时&#xff0c;系统突然运行缓慢&#xff0c;top 发现cpu飙升&#xff0c;一度接近100%&#xff0c;最终导致服务假死。 2. 问题排查 1. 执行 “top” 命令&#xff1a;查看所…

Elasticsearch

文章目录 分布式搜索引擎elasticsearch介绍elasticsearch作用ELK技术栈elasticsearch和lucene 倒排索引正向索引倒排索引正向和倒排比较 es的一些概念文档和字段索引和映射mysql与elasticsearch elasticsearch安装部署单点es部署kibana安装IK分词器扩展词词典停用词典 索引库操…

Go语言基础语法八万字详解,对小白友好

基本语法——变量var 变量的使用 什么是变量 变量是为存储特定类型的值而提供给内存位置的名称。在go中声明变量有多种语法。 所以变量的本质就是一小块内存&#xff0c;用于存储数据&#xff0c;在程序运行过程中数值可以改变 声明变量 var名称类型是声明单个变量的语法…

PaddleOCR #PP-OCR常见异常扫雷

异常一&#xff1a;ModuleNotFoundError: No module named ‘tools.infer’ 实验案例&#xff1a; PaddleOCR #使用PaddleOCR进行光学字符识别&#xff08;PP-OCR文本检测识别&#xff09; 参考代码&#xff1a; 图片文本检测实验时&#xff0c;运行代码出现异常&#xff1a;M…

自然语言处理从入门到应用——LangChain:模型(Models)-[大型语言模型(LLMs):缓存LLM的调用结果]

分类目录&#xff1a;《自然语言处理从入门到应用》总目录 from langchain.llms import OpenAI在内存中缓存 import langchain from langchain.cache import InMemoryCachelangchain.llm_cache InMemoryCache()# To make the caching really obvious, lets use a slower mode…

【我们一起60天准备考研算法面试(大全)-第二十七天 27/60】【真分数】

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客&#xff0c;如有问题交流&#xff0c;欢迎评论区留言&#xff0c;一定尽快回复&#xff01;&#xff08;大家可以去看我的专栏&#xff0c;是所有文章的目录&#xff09;   文章字体风格&#xff1a; 红色文字表示&#…

springboot修改ReqeustMappingHandlerMapping

RequestMappingHandlerMapping RequestMappingHandlerMapping将http请求映射到处理的方法上,负责解析处理器方法上的注解…如&#xff1a;RequestMapping ,GetMapping&#xff0c;&#xff0c;PostMapping,将请求路径&#xff0c;请求方法&#xff0c;请求参数等信息和 处理器…

8.6 PowerBI系列之DAX函数专题-非日期类型的累计聚合

需求 需求1&#xff1a; 需求2&#xff1a; 实现 1.需求1实现&#xff1a; &#xff08;1&#xff09;在power query中添加列-添加索引列&#xff1b; &#xff08;2&#xff09;根据索引列进行累加计算。 度量值 累计聚合销售额 var current_pro_type selectedvalue(…