文章目录
- 分布式搜索引擎elasticsearch
- 介绍
- elasticsearch作用
- ELK技术栈
- elasticsearch和lucene
- 倒排索引
- 正向索引
- 倒排索引
- 正向和倒排比较
- es的一些概念
- 文档和字段
- 索引和映射
- mysql与elasticsearch
- elasticsearch安装
- 部署单点es
- 部署kibana
- 安装IK分词器
- 扩展词词典
- 停用词典
- 索引库操作
- mapping映射属性
- 索引库的CRUD
- 文档操作
- 新增文档
- 查询文档
- 删除文档
- 修改文档
- REST API
- RestClient操作索引库
- 初始化RestClient
- 创建索引库
- 删除索引库
- 判断索引库是否存在
- RestClient操作文档
- 新增文档
- 查询文档
- 删除文档
- 修改文档
- 批量导入文档
- DSL查询文档
- 查询分类
- 全文检索查询
- 使用场景
- 基本语法
- 精准查询
- ids查询
- term查询
- range查询
- 地理坐标查询
- 矩形范围查询
- 附近查询
- 复合查询
- 相关性算分
- 算分函数查询
- 布尔查询
- 搜索结果处理
- 排序
- 分页
- RestClient查询文档
- match查询
- 精准查询
- 布尔查询
- 排序、分页
- 高亮
- 高亮结果解析
- 算分函数查询
- 数据聚合
- 聚合的种类
- DSL实现聚合
- Bucket聚合
- Metric聚合
- 总结
- RestAPI实现聚合
- 聚合条件语法
- 自动补全
- 拼音分词器
- 自定义分词器
- 自动补全查询
- 自动补全查询的JavaAPI
- 数据同步
- 同步调用
- 异步通知
- 监听binlog
- 集群
- 集群职责划分
- 集群分布式存储
- 分片存储原理
- 集群分布式查询
- 集群式故障转移
分布式搜索引擎elasticsearch
介绍
elasticsearch作用
elasticsearch是一款非常强大的开源搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能,可以帮助我们从海量数据中快速找到需要的内容
例如:
- 在github中搜索代码
- 在电商网站中搜索商品
- 在百度搜索答案
- 在打车软件中搜索附近的车
ELK技术栈
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域
elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
elasticsearch和lucene
elasticsearch底层是基于lucene来实现的。Lucene提供了搜索引擎的核心API
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。
Lucene的优势:
- 易扩展
- 高性能(基于倒排索引)
Lucene的缺点:
- 只限于java语言开发
- 学习曲线陡峭
- 不支持水平扩展
相比Lucene,elasticsearch具备以下优势:
- 支持分布式,可水平扩展
- 提供Restful接口,可以被任何语言调用
倒排索引
正向索引
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
倒排索引
倒排索引中有两个非常重要的概念:
- 文档(
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息 - 词条(
Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
创建倒排索引是对正向索引的一种特殊处理,流程如下:
- 将每一个文档的数据利用算法分词,得到一个个词条
- 创建表,每行数据包括词条、词条所在文档id、位置等信息
- 因为词条唯一性,可以给词条创建索引,例如hash表结构索引
如图:
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机"
进行搜索。
2)对用户输入内容分词,得到词条:华为
、手机
。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
正向和倒排比较
-
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
-
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
二者优缺点:
正向索引:
- 优点:
- 可以给多个字段创建索引
- 根据索引字段搜索、排序速度非常快
- 缺点:
- 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
倒排索引:
- 优点:
- 根据词条搜索、模糊搜索时,速度非常快
- 缺点:
- 只能给词条创建索引,而不是字段
- 无法根据字段做排序
es的一些概念
文档和字段
elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
Json文档中往往包含很多的字段(Field),类似于数据库中的列。
索引和映射
索引(Index),就是相同类型的文档的集合。
例如:
- 所有用户文档,就可以组织在一起,称为用户的索引;
- 所有商品的文档,可以组织在一起,称为商品的索引;
- 所有订单的文档,可以组织在一起,称为订单的索引;
可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
mysql与elasticsearch
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
两者各自有自己的擅长支出:
- Mysql:擅长事务类型操作,可以确保数据的安全和一致性
- Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
- 对安全性要求较高的写操作,使用mysql实现
- 对查询性能要求较高的搜索需求,使用elasticsearch实现
- 两者再基于某种方式,实现数据的同步,保证一致性
elasticsearch安装
部署单点es
- 创建网络
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
docker network create es-net
- 加载镜像
- 可以使用docker pull elasticsearch的方式拉取镜像,但是elasticsearch镜像太大
- 可以将本地下载好的镜像导入虚拟机,然后使用以下命令加载镜像
docker load -i es.tar
- 运行镜像为容器
docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.12.1
-e为配置环境:ES_JAVA_OPTS设置堆内存大小;discovery.type设置运行模式,这里设置为单点运行
-v为挂载数据卷:data和plugins分别配置了elasticsearch的数据和插件
–privileged授予逻辑卷访问权
–network加入网络
-p配置端口:9200是http协议端口,供用户访问;9300是elasticsearch各容器内通信端口
通过192.168.133.128:9200访问elasticsearch
部署kibana
kibana可以给我们提供一个elasticsearch的可视化界面
- 加载镜像
同样使用以下命令加载镜像
docker load -i kibana.tar
- 部署
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601 \
kibana:7.12.1
-e设置环境:ELASTICSEARCH_HOST配置elasticsearch地址
通过192.168.133.128:5601访问kibana
安装IK分词器
- 离线安装ik插件
安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
将准备好的ik
文件夹移动到es容器的插件数据卷中/var/lib/docker/volumes/es-plugins/_data
- 重启容器
docker restart es
- 测试
IK分词器包含两种模式:
ik_smart
:最少切分ik_max_word
:最细切分
使用 kibana 的 dev tools:
测试:
GET /_analyze
{"analyzer": "ik_max_word","text": "如果你也可以像我一样,那我觉得这件事情太酷啦"
}
结果:
{"tokens" : [{"token" : "如果","start_offset" : 0,"end_offset" : 2,"type" : "CN_WORD","position" : 0},{"token" : "你","start_offset" : 2,"end_offset" : 3,"type" : "CN_CHAR","position" : 1},{"token" : "也","start_offset" : 3,"end_offset" : 4,"type" : "CN_CHAR","position" : 2},{"token" : "可以","start_offset" : 4,"end_offset" : 6,"type" : "CN_WORD","position" : 3},{"token" : "像我","start_offset" : 6,"end_offset" : 8,"type" : "CN_WORD","position" : 4},{"token" : "一样","start_offset" : 8,"end_offset" : 10,"type" : "CN_WORD","position" : 5},{"token" : "一","start_offset" : 8,"end_offset" : 9,"type" : "TYPE_CNUM","position" : 6},{"token" : "样","start_offset" : 9,"end_offset" : 10,"type" : "COUNT","position" : 7},{"token" : "那我","start_offset" : 11,"end_offset" : 13,"type" : "CN_WORD","position" : 8},{"token" : "觉得","start_offset" : 13,"end_offset" : 15,"type" : "CN_WORD","position" : 9},{"token" : "这件","start_offset" : 15,"end_offset" : 17,"type" : "CN_WORD","position" : 10},{"token" : "件事","start_offset" : 16,"end_offset" : 18,"type" : "CN_WORD","position" : 11},{"token" : "事情","start_offset" : 17,"end_offset" : 19,"type" : "CN_WORD","position" : 12},{"token" : "太酷","start_offset" : 19,"end_offset" : 21,"type" : "CN_WORD","position" : 13},{"token" : "啦","start_offset" : 21,"end_offset" : 22,"type" : "CN_CHAR","position" : 14}]
}
扩展词词典
随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“泰裤辣”,“小黑子” 等。
所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。
- 打开ik分词器config目录
- 在IKAnalyzer.cfg.xml配置文件内容添加
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--><entry key="ext_dict">ext.dic</entry>
</properties>
- 新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
泰裤辣
小黑子
- 重启elasticsearch
docker restart es
- 测试
GET /_analyze
{"analyzer": "ik_max_word","text": "小黑子真是泰裤辣!"
}
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
停用词典
- IKAnalyzer.cfg.xml配置文件内容添加
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典--><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典--><entry key="ext_stopwords">stopword.dic</entry>
</properties>
- 在 stopword.dic 添加停用词
sb
- 重启elasticsearch
- 测试
索引库操作
索引库就类似数据库表,mapping映射就类似表的结构。
我们要向es中存储数据,必须先创建“库”和“表”。
mapping映射属性
mapping是对索引库中文档的约束,常见的mapping属性包括:
- type:字段数据类型,常见的简单类型有:
- 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
- 数值:long、integer、short、byte、double、float、
- 布尔:boolean
- 日期:date
- 对象:object
- index:是否创建索引,默认为true
- analyzer:使用哪种分词器
- properties:该字段的子字段
索引库的CRUD
- 创建索引库和映射
基本语法:
- 请求方式:PUT
- 请求路径:/索引库名,可以自定义
- 请求参数:mapping映射
格式:
PUT /索引库名称
{"mappings": {"properties": {"字段名":{"type": "text","analyzer": "ik_smart"},"字段名2":{"type": "keyword","index": "false"},"字段名3":{"properties": {"子字段": {"type": "keyword"}}},// ...略}}
}
- 查询索引库
基本语法:
- 请求方式:GET
- 请求路径:/索引库名
- 请求参数:无
格式:
GET /索引库名
- 修改索引库
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明:
PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}
- 删除索引库
语法:
- 请求方式:DELETE
- 请求路径:/索引库名
- 请求参数:无
格式:
DELETE /索引库名
文档操作
新增文档
新增文档可以采用POST或PUT,但二者略有不同
- PUT:需要指定文档id:
POST /索引库名/_doc/文档id
- POST:不需要指定文档id,Elasticsearch 自动生成一个唯一的文档ID:
POST /索引库名/_doc
语法:
PUT /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ...
}POST /索引库名/_doc
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ...
}
示例:
PUT /employee/_doc/1
{"age":"42","children":{"daughter":"Lucy","son":"David"},"height":"176.3","name":"张三"
}
查询文档
语法:
GET /{索引库名称}/_doc/{id}
通过kibana查看数据:
GET /employee/_doc/1
删除文档
语法:
DELETE /{索引库名}/_doc/id值
示例:
# 根据id删除数据
DELETE /employee/_doc/1
修改文档
修改有两种方式:
- 全量修改:直接覆盖原来的文档
- 增量修改:修改文档中的部分字段
- 全量修改
全量修改是覆盖原来的文档,其本质是:
- 根据指定的id删除文档
- 新增一个相同id的文档
注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。
语法:
PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}
- 增量修改
增量修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}
REST API
ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。
其中的Java Rest Client又包括两种:
- Java Low Level Rest Client
- Java High Level Rest Client
接下来介绍Java High Level Rest Client
RestClient操作索引库
初始化RestClient
在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
分为三步:
1)引入es的RestHighLevelClient依赖:
<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>
2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:
<properties><java.version>1.8</java.version><elasticsearch.version>7.12.1</elasticsearch.version>
</properties>
3)初始化RestHighLevelClient:
初始化的代码如下:
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")
));
这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:
public class HotelIndexTest {private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.133.128:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}
创建索引库
代码分为三步:
- 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
CreateIndexRequest request = new CreateIndexRequest("hotel");
- 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
request.source(MAPPING_TEMPLATE, XContentType.JSON);
public static final String MAPPING_TEMPLATE = "{\n" +" \"mappings\": {\n" +" \"properties\": {\n" +" \"id\": {\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"name\":{\n" +" \"type\": \"text\",\n" +" \"analyzer\": \"ik_max_word\",\n" +" \"copy_to\": \"all\"\n" +" },\n" +" \"address\":{\n" +" \"type\": \"keyword\",\n" +" \"index\": false\n" +" },\n" +" \"price\":{\n" +" \"type\": \"integer\"\n" +" },\n" +" \"score\":{\n" +" \"type\": \"integer\"\n" +" },\n" +" \"brand\":{\n" +" \"type\": \"keyword\",\n" +" \"copy_to\": \"all\"\n" +" },\n" +" \"city\":{\n" +" \"type\": \"keyword\",\n" +" \"copy_to\": \"all\"\n" +" },\n" +" \"starName\":{\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"business\":{\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"location\":{\n" +" \"type\": \"geo_point\"\n" +" },\n" +" \"pic\":{\n" +" \"type\": \"keyword\",\n" +" \"index\": false\n" +" },\n" +" \"all\":{\n" +" \"type\": \"text\",\n" +" \"analyzer\": \"ik_max_word\"\n" +" }\n" +" }\n" +" }\n" +"}";
- 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。
client.indices().create(request, RequestOptions.DEFAULT);
完整代码:
@Testvoid createHotelIndex() throws IOException {// 1.创建Request对象CreateIndexRequest request = new CreateIndexRequest("hotel");// 2.准备请求的参数:DSL语句request.source(MAPPING_TEMPLATE, XContentType.JSON);// 3.发送请求client.indices().create(request, RequestOptions.DEFAULT);}
删除索引库
删除索引库的DSL语句非常简单:
DELETE /hotel
与创建索引库相比:
- 请求方式从PUT变为DELTE
- 请求路径不变
- 无请求参数
所以代码的差异,注意体现在Request对象上。依然是三步走:
- 1)创建Request对象。这次是DeleteIndexRequest对象
- 2)准备参数。这里是无参
- 3)发送请求。改用delete方法
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:
@Test
void testDeleteHotelIndex() throws IOException {// 1.创建Request对象DeleteIndexRequest request = new DeleteIndexRequest("hotel");// 2.发送请求client.indices().delete(request, RequestOptions.DEFAULT);
}
判断索引库是否存在
判断索引库是否存在,本质就是查询,对应的DSL是:
GET /hotel
因此与删除的Java代码流程是类似的。依然是三步走:
- 1)创建Request对象。这次是GetIndexRequest对象
- 2)准备参数。这里是无参
- 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {// 1.创建Request对象GetIndexRequest request = new GetIndexRequest("hotel");// 2.发送请求boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);// 3.输出System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}
RestClient操作文档
酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
@SpringBootTest
public class HotelDocumentTest {@Autowiredprivate IHotelService hotelService;private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}
新增文档
数据库查询后的结果是一个Hotel类型的对象。结构如下:
@Data
@TableName("tb_hotel")
public class Hotel {@TableId(type = IdType.INPUT)private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String longitude;private String latitude;private String pic;
}
与我们的索引库结构存在差异:
- longitude和latitude需要合并为location
因此,我们需要定义一个新的类型,与索引库结构吻合:
package cn.itcast.hotel.pojo;import lombok.Data;
import lombok.NoArgsConstructor;@Data
@NoArgsConstructor
public class HotelDoc {private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String location;private String pic;public HotelDoc(Hotel hotel) {this.id = hotel.getId();this.name = hotel.getName();this.address = hotel.getAddress();this.price = hotel.getPrice();this.score = hotel.getScore();this.brand = hotel.getBrand();this.city = hotel.getCity();this.starName = hotel.getStarName();this.business = hotel.getBusiness();this.location = hotel.getLatitude() + ", " + hotel.getLongitude();this.pic = hotel.getPic();}
}
新增文档的DSL语句如下:
POST /{索引库名}/_doc/1
{"name": "Jack","age": 21
}
对应的java代码实现方法如下:
- 1)创建Request对象
- 2)准备请求参数,也就是DSL中的JSON文档
- 3)发送请求
@Test
void testAddDocument() throws IOException {// 1.根据id查询酒店数据Hotel hotel = hotelService.getById(61083L);// 2.转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 3.将HotelDoc转jsonString json = JSON.toJSONString(hotelDoc);// 1.准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());// 2.准备Json文档request.source(json, XContentType.JSON);// 3.发送请求client.index(request, RequestOptions.DEFAULT);
}
查询文档
查询的DSL语句如下:
GET /hotel/_doc/{id}
因此java代码大概分为以下几步:
- 1)准备Request对象。这次是查询,所以是GetRequest
- 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
- 3)解析结果,就是对JSON做反序列化
@Test
void testGetDocumentById() throws IOException {// 1.准备RequestGetRequest request = new GetRequest("hotel", "61082");// 2.发送请求,得到响应GetResponse response = client.get(request, RequestOptions.DEFAULT);// 3.解析响应结果String json = response.getSourceAsString();HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);System.out.println(hotelDoc);
}
删除文档
删除的DSL是这样的:
DELETE /hotel/_doc/{id}
与查询相比,仅仅是请求方式从DELETE变成GET:
- 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
- 2)准备参数,无参
- 3)发送请求。因为是删除,所以是client.delete()方法
@Test
void testDeleteDocument() throws IOException {// 1.准备RequestDeleteRequest request = new DeleteRequest("hotel", "61083");// 2.发送请求client.delete(request, RequestOptions.DEFAULT);
}
修改文档
修改有两种方式:
- 全量修改:本质是先根据id删除,再新增(与新增API完全一致)
- 增量修改:修改文档中的指定字段值
增量修改代码也分为三步:
- 1)准备Request对象。这次是修改,所以是UpdateRequest
- 2)准备参数。也就是JSON文档,里面包含要修改的字段
- 3)更新文档。这里调用client.update()方法
@Test
void testUpdateDocument() throws IOException {// 1.准备RequestUpdateRequest request = new UpdateRequest("hotel", "61083");// 2.准备请求参数request.doc("price", "952","starName", "四钻");// 3.发送请求client.update(request, RequestOptions.DEFAULT);
}
批量导入文档
利用BulkRequest批量将数据库数据导入到索引库中
步骤如下:
-
利用mybatis-plus查询酒店数据
-
将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
-
利用JavaRestClient中的BulkRequest批处理,实现批量新增文档
批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。
其中提供了一个add方法,用来添加其他请求:
能添加的请求包括:
- IndexRequest,也就是新增
- UpdateRequest,也就是修改
- DeleteRequest,也就是删除
因此Bulk中添加了多个IndexRequest,就是批量新增功能了
- 1)创建Request对象。这里是BulkRequest
- 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
- 3)发起请求。这里是批处理,调用的方法为client.bulk()方法
@Test
void testBulkRequest() throws IOException {// 批量查询酒店数据List<Hotel> hotels = hotelService.list();// 1.创建RequestBulkRequest request = new BulkRequest();// 2.准备参数,添加多个新增的Requestfor (Hotel hotel : hotels) {// 2.1.转换为文档类型HotelDocHotelDoc hotelDoc = new HotelDoc(hotel);// 2.2.创建新增文档的Request对象request.add(new IndexRequest("hotel").id(hotelDoc.getId().toString()).source(JSON.toJSONString(hotelDoc), XContentType.JSON));}// 3.发送请求client.bulk(request, RequestOptions.DEFAULT);
}
DSL查询文档
elasticsearch的查询依然是基于JSON风格的DSL来实现的。
查询分类
常见的查询类型包括:
-
查询所有:查询出所有数据,一般测试用。例如:match_all
-
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
- match_query
- multi_match_query
-
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
- ids
- range
- term
-
地理(geo)查询:根据经纬度查询。例如:
- geo_distance
- geo_bounding_box
-
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
- bool
- function_score
查询的语法基本一致:
GET /indexName/_search
{"query": {"查询类型": {"查询条件": "条件值"}}
}
全文检索查询
使用场景
查询基本流程:
- 对用户搜索的内容做分词,得到词条
- 根据词条去倒排索引库中匹配,得到文档id
- 根据文档id找到文档,返回给用户
比较常用的场景:
- 商城的输入框搜索
- 百度输入框搜索
基本语法
常见的全文检索查询包括:
- match查询:单字段查询
- multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件
match查询语法如下:
GET /indexName/_search
{"query": {"match": {"FIELD": "TEXT"}}
}
FIELD:需要查询的文档中的字段名
elasticsearch会将TEXT进行分词,然后在倒排索引库中进行查询
如果在FIELD处写all,则表明查询的是在mapping properties中被添加到all中的字段
mulit_match语法如下:
GET /indexName/_search
{"query": {"multi_match": {"query": "TEXT","fields": ["FIELD1", " FIELD12"]}}
}
query指的是希望查询的语句
fields指的是需要搜索的字段
与match不同的是,match需要将:前的FIELD替换为字段名;这里只需要修改:后的值即可
搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。
精准查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
- ids:根据文档的id精确查询
- term:根据词条精确值查询
- range:根据值的范围查询
ids查询
Ids查询是一种特殊的查询,用于匹配多个文档ID。它可以在查询时指定一个或多个文档ID,然后返回这些文档的搜索结果。
语法说明:
GET /indexName/_search
{"query": {"ids": {"values": ["VALUE1","VALUE2","VALUE3"]}}
}
term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
// term查询
GET /indexName/_search
{"query": {"term": {"FIELD": {"value": "VALUE"}}}
}
当我搜索的是精确词条时,能正确查询出结果
当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到
range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
// range查询
GET /indexName/_search
{"query": {"range": {"FIELD": {"gte": 10, // 这里的gte代表大于等于,gt则代表大于"lte": 20 // lte代表小于等于,lt则代表小于}}}
}
地理坐标查询
其实就是根据经纬度查询
常见的使用场景包括:
- 携程:搜索我附近的酒店
- 滴滴:搜索我附近的出租车
- 微信:搜索我附近的人
矩形范围查询
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
// geo_bounding_box查询
// lat:维度
// lon:经度
GET /indexName/_search
{"query": {"geo_bounding_box": {"FIELD": {"top_left": { // 左上点"lat": 31.1,"lon": 121.5},"bottom_right": { // 右下点"lat": 30.9,"lon": 121.7}}}}
}
附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
语法说明:
// geo_distance 查询
GET /indexName/_search
{"query": {"geo_distance": {"distance": "15km", // 半径"FIELD": "31.21,121.5" // 圆心}}
}
复合查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
- fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
- bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
相关性算分
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:
在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:
TF-IDF算法有一个缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。
而BM25则会让单个词条的算分有一个上限,曲线更加平滑:
算分函数查询
控制相关性算分,就需要利用elasticsearch中的function score 查询
语法说明:
// function_score 查询
GET /indexName/_search
{"query": {"function_score": {"query": {"METHOD": {"FIELD": "TEXT"}},"functions": [{"filter": {"term": {"FIELD": "VALUE"}},"weight": VALUE}],"boost_mode": "multiply" }}
}
function score 查询中包含四部分内容:
- 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
- 过滤条件:filter部分,符合该条件的文档才会重新算分
- 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
- weight:函数结果是常量
- field_value_factor:以文档中的某个字段值作为函数结果
- random_score:以随机数作为函数结果
- script_score:自定义算分函数算法
- 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
- multiply:相乘
- replace:用function score替换query score
- 其它,例如:sum、avg、max、min
function score的运行流程如下:
- 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
- 2)根据过滤条件,过滤文档
- 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
- 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
因此,其中的关键点是:
- 过滤条件:决定哪些文档的算分被修改
- 算分函数:决定函数算分的算法
- 运算模式:决定最终算分结果
布尔查询
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
- must:必须匹配每个子查询,类似“与”
- should:选择性匹配子查询,类似“或”
- must_not:必须不匹配,不参与算分,类似“非”
- filter:必须匹配,不参与算分
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤。
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
- 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
- 其它过滤条件,采用filter查询。不参与算分
语法示例:
GET /hotel/_search
{"query": {"bool": {"must": [{"term": {"city": "上海" }}],"should": [{"term": {"brand": "皇冠假日" }},{"term": {"brand": "华美达" }}],"must_not": [{ "range": { "price": { "lte": 500 } }}],"filter": [{ "range": {"score": { "gte": 45 } }}]}}
}
搜索结果处理
搜索的结果可以按照用户指定的方式去处理或展示。
排序
elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。
- 普通字段排序
keyword、数值、日期类型排序的语法基本一致。
语法:
GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"FIELD": "desc" // 排序字段、排序方式ASC、DESC}]
}
排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推
- 地理坐标排序
语法说明:
GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"_geo_distance" : {"FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点"order" : "asc", // 排序方式"unit" : "km" // 排序的距离单位}}]
}
这个查询的含义是:
- 指定一个坐标,作为目标点
- 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
- 根据距离排序
示例:
分页
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:
- from:从第几个文档开始
- size:总共查询几个文档
类似于mysql中的limit ?, ?
- 基本分页查询
分页的基本语法如下:
GET /hotel/_search
{"query": {"match_all": {}},"from": 0, // 分页开始的位置,默认为0"size": 10, // 期望获取的文档总数"sort": [{"price": "asc"}]
}
- 深度分页问题
要查询990~1000的数据,查询逻辑要这么写:
GET /hotel/_search
{"query": {"match_all": {}},"from": 990, // 分页开始的位置,默认为0"size": 10, // 期望获取的文档总数"sort": [{"price": "asc"}]
}
RestClient查询文档
基本步骤包括:
- 1)准备Request对象
SearchRequest request = new SearchRequest("INDEXNAME");
- 2)准备请求参数
request.source().query(QUERY);
request.source()
构建DSL,DSL中可以包含查询、分页、排序、高亮等- 排序:from() + sort()
- 高亮:highlighter
- 分页:size()
- 查询:query()
query()
代表查询条件,例:利用QueryBuilders.matchAllQuery()
构建一个match_all查询的DSL- QueryBuilders包含match、term、function_score、bool等各种查询
- 3)发起请求
SearchResponsse response = client.search(request, RequestOptions.DEFAULT);
- 4)解析响应
elasticsearch返回的结果是一个JSON字符串,结构包含:
hits
:命中的结果total
:总条数,其中的value是具体的总条数值max_score
:所有结果中得分最高的文档的相关性算分hits
:搜索结果的文档数组,其中的每个文档都是一个json对象_source
:文档中的原始数据,也是json对象
我们解析响应结果,就是逐层解析JSON字符串,流程如下:
SearchHits
:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果SearchHits.getTotalHits().value
:获取总条数信息SearchHits.getHits()
:获取SearchHit数组,也就是文档数组SearchHit.getSourceAsString()
:获取文档结果中的_source,也就是原始的json文档数据
match查询
代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:
//单字段查询
QueryBuilders.matchQuery("all","TEXT");
//多字段查询
QueryBuilders.multiMatchQuery("TEXT","FIELD1","FIELD2");
结果解析代码则完全一致,可以抽取并共享。
精准查询
精确查询主要是两者:
- term:词条精确匹配
- range:范围查询
与之前的查询相比,差异同样在查询条件,其它都一样。
//词条查询
QueryBuilders.termQuery("FIELD","TEXT");
//范围查询
//这里的范围条件比较与DSL中相同,gte为大于等于
QueryBuilders,rangeQuery("FIELD").gte(100).lte(150);
布尔查询
布尔查询是用must、must_not、filter等方式组合其它查询
//创建布尔函数
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
//添加must条件
boolQuery.must(QueryBuilders.termQuery("FIELD","TEXT"));
//添加filter条件
boolQuery.filter(QueryBuilders.rangeQuery("FIELD").lte(250));
API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。
排序、分页
搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。
//分页
request.source().from(0).size(5);
//排序
reequest.source().sort("FIELD",SortOrder.ASC);
sort()中同样可以使用SortBuilders做参数
SortBuilders中包含各种排序方法
按地理位置排序SortBuilders.geoDistanceSort("location", new GeoPoint(location)).order(SortOrder.ASC).unit(DistanceUnit.KILOMETERS)
高亮
高亮的代码与之前代码差异较大,有两点:
- 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
- 结果解析:结果除了要解析_source文档数据,还要解析高亮结果
//requireFieldMatch是否需要和查询字段匹配
request.source().highlighter(new HighlightBuilder().field("name")).requireFieldMatch(false)
高亮结果解析
完整代码如下:
private void handleResponse(SearchResponse response) {// 4.解析响应SearchHits searchHits = response.getHits();// 4.1.获取总条数long total = searchHits.getTotalHits().value;System.out.println("共搜索到" + total + "条数据");// 4.2.文档数组SearchHit[] hits = searchHits.getHits();// 4.3.遍历for (SearchHit hit : hits) {// 获取文档sourceString json = hit.getSourceAsString();// 反序列化HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);// 获取高亮结果Map<String, HighlightField> highlightFields = hit.getHighlightFields();if (!CollectionUtils.isEmpty(highlightFields)) {// 根据字段名获取高亮结果HighlightField highlightField = highlightFields.get("name");if (highlightField != null) {// 获取高亮值String name = highlightField.getFragments()[0].string();// 覆盖非高亮结果hotelDoc.setName(name);}}System.out.println("hotelDoc = " + hotelDoc);}
}
算分函数查询
// 算分控制FunctionScoreQueryBuilder functionScoreQuery =QueryBuilders.functionScoreQuery(// 原始查询,相关性算分的查询boolQuery,// function score的数组new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{// 其中的一个function score 元素new FunctionScoreQueryBuilder.FilterFunctionBuilder(// 过滤条件QueryBuilders.termQuery("isAD", true),// 算分函数ScoreFunctionBuilders.weightFactorFunction(10))});request.source().query(functionScoreQuery);
数据聚合
聚合可以让我们极其方便的实现对数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
聚合的种类
聚合常见的有三类:
-
**桶(Bucket)**聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
-
**度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
-
**管道(pipeline)**聚合:其它聚合的结果为基础做聚合
**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型
DSL实现聚合
Bucket聚合
- 语法如下:
GET /hotel/_search
{"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果"aggs": { // 定义聚合"brandAgg": { //给聚合起个名字,这里取名为brandAgg"terms": { // 聚合的类型,按照品牌值聚合,所以选择term"field": "brand", // 参与聚合的字段。这里为brand品牌参与聚合"size": 20 // 希望获取的聚合结果数量}}}
}
- 聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","order": {"_count": "asc" // 按照_count升序排列},"size": 20}}}
}
- 限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{"query": {"range": {"price": {"lte": 200 // 只对200元以下的文档聚合}}}, "size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","size": 20}}}
}
Metric聚合
需要对桶内的文档做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
- 语法
GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": { "terms": { "field": "brand", "size": 20},"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算"score_stats": { // 聚合名称"stats": { // 聚合类型,这里stats可以计算min、max、avg等"field": "score" // 聚合字段,这里是score}}}}}
}
总结
aggs代表聚合,与query同级,此时query的作用是:限定聚合的的文档范围
聚合必须的三要素:
- 聚合名称
- 聚合类型
- 聚合字段
聚合可配置属性有:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
RestAPI实现聚合
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
聚合条件语法
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
request.source().size(0);
request.source().aggregation(AggregationBuilders.terms("AGGNAME").field("FIELD").size(NUM));
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析
自动补全
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。
因为需要根据拼音字母来推断,因此要用到拼音分词功能。
拼音分词器
要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin
同样需要将解压后的文件夹上传到为es-plugins挂载的数据卷中,并重启elasticsearch
自定义分词器
默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。
elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
- tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
- tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
声明自定义分词器的语法如下:
PUT /test
{"settings": {"analysis": {"analyzer": { // 自定义分词器"my_analyzer": { // 分词器名称"tokenizer": "ik_max_word", //分词器类型"filter": "py"}},"filter": { // 自定义tokenizer filter"py": { // 过滤器名称"type": "pinyin", // 过滤器类型,这里是pinyin"keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"name": {"type": "text","analyzer": "my_analyzer","search_analyzer": "ik_smart"}}}
}
自动补全查询
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
- 参与补全查询的字段必须是completion类型。
- 字段的内容一般是用来补全的多个词条形成的数组。
示例:
// 创建索引库
PUT test
{"mappings": {"properties": {"title":{"type": "completion"}}}
}// 示例数据
POST test/_doc
{"title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{"title": ["SK-II", "PITERA"]
}
POST test/_doc
{"title": ["Nintendo", "switch"]
}// 自动补全查询
GET /test/_search
{"suggest": {"title_suggest": {"text": "s", // 关键字"completion": {"field": "title", // 补全查询的字段"skip_duplicates": true, // 跳过重复的"size": 10 // 获取前10条结果}}}
}
自动补全查询的JavaAPI
自动补全的结果也比较特殊
数据同步
elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步。
同步调用
基本步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,
异步通知
流程如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
监听binlog
流程如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
集群
单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。
- 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
- 单点故障问题:将分片数据在不同节点备份(replica )
ES集群相关概念:
-
集群(cluster):一组拥有共同的 cluster name 的 节点。
-
节点(node) :集群中的一个 Elasticearch 实例
-
分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中
解决问题:数据量太大,单点存储量有限的问题。
- 主分片(Primary shard):相对于副本分片的定义。
- 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。
数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!
为了在高可用和成本间寻求平衡,我们可以这样做:
- 首先对数据分片,存储到不同节点
- 然后对每个分片进行备份,放到对方节点,完成互相备份
集群职责划分
真实的集群一定要将集群职责分离:
- master节点:对CPU要求高,但是内存要求低
- data节点:对CPU和内存要求都高
- coordinating节点:对网络带宽、CPU要求高
职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。
脑裂是因为集群中的节点失联导致的。
例如一个集群中,主节点与其它节点失联:
此时,node2和node3认为node1宕机,就会重新选主:
当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。
当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:
解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。
集群分布式存储
当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢
分片存储原理
elasticsearch会通过hash算法来计算文档应该存储到哪个分片shard hash(_routing) % number_of_shards
说明:
- _routing默认是文档的id
- 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!
集群分布式查询
elasticsearch的查询分成两个阶段:
- scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
- gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户
集群式故障转移
集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。