OpenCV官方教程中文版 —— 直方图的计算,绘制与分析

OpenCV官方教程中文版 —— 直方图的计算,绘制与分析

  • 前言
  • 一、原理
    • 1.统计直方图
    • 2. 绘制直方图
    • 3. 使用掩模

前言

使用 OpenCV 或 Numpy 函数计算直方图

使用 Opencv 或者 Matplotlib 函数绘制直方图

将要学习的函数有:cv2.calcHist(),np.histogram()

一、原理

什么是直方图呢?通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值(0 到 255),y 轴是图片中具有同一个灰度值的点的数目。

直方图其实就是对图像的另一种解释。一下图为例,通过直方图我们可以对图像的对比度,亮度,灰度分布等有一个直观的认识。几乎所有的图像处理软件都提供了直方图分析功能。下图来自Cambridge in Color website,强烈推荐你到这个网站了解更多知识。

在这里插入图片描述
让我们来一起看看这幅图片和它的直方图吧。(要记住,直方图是根据灰度图像绘制的,而不是彩色图像)。直方图的左边区域像是了暗一点的像素数量,右侧显示了亮一点的像素的数量。从这幅图上你可以看到灰暗的区域比两的区域要大,而处于中间部分的像素点很少。

1.统计直方图

现在我们知道什么是直方图了,那怎样获得一副图像的直方图呢?OpenCV 和 Numpy 都有内置函数做这件事。在使用这些函数之前我们有必要想了解一下直方图相关的术语。

BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到 255,你就需要 256 个数来显示上面的直方图。但是,如果你不需要知道每一个像素值的像素点数目的,而只希望知道两个像素值之间的像素点数目怎么办呢?举例来说,我们想知道像素值在 0 到 15 之间的像素点的数目,接着是 16 到 31,…,240 到 255。我们只需要 16 个值来绘制直方图。

那到底怎么做呢?你只需要把原来的 256 个值等分成 16 小组,取每组的总和。而这里的每一个小组就被成为 BIN。第一个例子中有 256 个 BIN,第二个例子中有 16 个 BIN。在 OpenCV 的文档中用 histSize 表示 BINS。

DIMS:表示我们收集数据的参数数目。在本例中,我们对收集到的数据只考虑一件事:灰度值。所以这里就是 1。

RANGE:就是要统计的灰度值范围,一般来说为 [0,256],也就是说所有的灰度值

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])
  1. images: 原图像(图像格式为 uint8 或 float32)。当传入函数时应该用中括号 [] 括起来,例如:[img]。
  2. channels: 同样需要用中括号括起来,它会告诉函数我们要统计那幅图像的直方图。如果输入图像是灰度图,它的值就是 [0];如果是彩色图像的话,传入的参数可以是 [0],[1],[2] 它们分别对应着通道 B,G,R。
  3. mask: 掩模图像。要统计整幅图像的直方图就把它设为 None。但是如果你想统计图像某一部分的直方图的话,你就需要制作一个掩模图像,并使用它。(后边有例子)
  4. histSize:BIN 的数目。也应该用中括号括起来,例如:[256]。
  5. ranges: 像素值范围,通常为 [0,256]

让我们从一副简单图像开始吧。以灰度格式加载一幅图像并统计图像的直方图。

img = cv2.imread('home.jpg',0)
# 别忘了中括号 [img],[0],None,[256],[0,256],只有 mask 没有中括号
hist = cv2.calcHist([img],[0],None,[256],[0,256])

hist 是一个 256x1 的数组,每一个值代表了与次灰度值对应的像素点数目。

使用 Numpy 统计直方图 Numpy 中的函数 np.histogram() 也可以帮我们统计直方图。你也可以尝试一下下面的代码:

#img.ravel() 将图像转成一维数组,这里没有中括号。
hist,bins = np.histogram(img.ravel(),256,[0,256])

hist 与上面计算的一样。但是这里的 bins 是 256,因为 Numpy 计算bins 的方式为:0-0.99,1-1.99,2-2.99 等。所以最后一个范围是 255-255.99。为了表示它,所以在 bins 的结尾加上了 256。但是我们不需要 256,到 255就够了。

其他:Numpy还有一个函数 np.bincount(),它的运行速度是np.histgram 的十倍。所以对于一维直方图,我们最好使用这个函数。使用 np.bincount 时别忘了设置 minlength=256。 例如,hist=np.bincount(img.ravel(),minlength=256)

注意:OpenCV 的函数要比 np.histgram() 快 40 倍。所以坚持使用OpenCV 函数。

2. 绘制直方图

有两种方法来绘制直方图:

  1. Short Way(简单方法):使用 Matplotlib 中的绘图函数。
  2. Long Way(复杂方法):使用 OpenCV 绘图函数

使用 Matplotlib Matplotlib 中有直方图绘制函数:matplotlib.pyplot.hist()它可以直接统计并绘制直方图。

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
import numpy as np
A = cv2.imread('apple.png', 0)
plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(A, cmap='gray', interpolation='bicubic')  # expect true color
plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(1, 2, 2)
plt.hist(A.ravel(), 256, [0, 256])
plt.show()

你会得到下面这样一幅图:
在这里插入图片描述
或者你可以只使用 matplotlib 的绘图功能,这在同时绘制多通道(BGR)的直方图,很有用。但是你首先要告诉绘图函数你的直方图数据在哪里。运行一下下面的代码:

img = cv2.imread('apple.png')
color = ('b', 'g', 'r')
# 对一个列表或数组既要遍历索引又要遍历元素时
# 使用内置 enumerrate 函数会有更加直接,优美的做法
# enumerate 会将数组或列表组成一个索引序列。
# 使我们再获取索引和索引内容的时候更加方便
for i, col in enumerate(color):histr = cv2.calcHist([img], [i], None, [256], [0, 256])plt.plot(histr, color=col)plt.xlim([0, 256])
plt.show()

在这里插入图片描述

3. 使用掩模

要统计图像某个局部区域的直方图只需要构建一副掩模图像。将要统计的部分设置成白色,其余部分为黑色,就构成了一副掩模图像。然后把这个掩模图像传给函数就可以了。

img = cv2.imread('home.jpg',0)
# create a mask
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
masked_img = cv2.bitwise_and(img,img,mask = mask)
# Calculate histogram with mask and without mask
# Check third argument for mask
hist_full = cv2.calcHist([img],[0],None,[256],[0,256])
hist_mask = cv2.calcHist([img],[0],mask,[256],[0,256])
plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask,'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0,256])
plt.show()

结果如下,其中蓝线是整幅图像的直方图,绿线是进行掩模之后的直方图。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/117314.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

导入自己的jacoco exec文件到IDEA并进行展示

哈喽各位,许久没写过文章了,今天更新一篇将自己本地的jacoco exec文件导入到IDEA中并展示 jacoco是一个用来分析代码覆盖率的三方工具,并且IDEA中也集成了该功能,可以在IDEA中直接生成jacoco覆盖率,但如果我们有一个现…

Java线程中sleep()、wait()、yield()、join()方法的使用

1.sleep() sleep(): sleep 方法属于 Thread 类,该行为中线程不会释放锁,只阻塞线程,让出cpu给其他线程,当达到指定的时间后会自动恢复运行状态继续运行。 2.wait() wait(): 该方法属于 Object 类,在这个过程里线程会…

Linux命令(104)之date

linux命令之date 1.date介绍 linux命令date用来设置和显示系统日期和时间 2.date用法 date [参数] date参数 参数说明-s修改并设置时间-d可以显示以前和未来的时间%H小时%M分钟%S秒%X等价于%H %M %S%F显示当前所有时间属性%Y完整年份%m月%d日%A星期的全称 3.实例 3.1.当前…

在自己的服务器上部署个人博客和开源项目:实现数字存在感

在数字时代,拥有自己的服务器不再是一项难以实现的任务。通过云计算和开源技术的广泛应用,个人可以轻松地拥有自己的服务器,并在其上部署个人博客以及开源项目,为自己在互联网上创造一个数字存在感。本文将介绍如何在自己的服务器…

重装win11,个人记录详细步骤-干货

重装win11,个人记录详细步骤-干货 下载镜像-windows官网 https://www.microsoft.com/zh-cn/software-download/windows11%20 安装的选这个就行 虽然他这里写的是家庭版,进去里面就可以选择其他版本 重装win11有个前提 系统最低要求 本文列出了 Windo…

13.4web自动化测试(Selenium3+Java)

一.定义 用来做web自动化测试的框架. 二.特点 1.支持各种浏览器. 2.支持各种平台(操作系统). 3.支持各种编程语言. 4.有丰富的api. 三.工作原理 四.搭环境 1.对照Chrome浏览器版本号,下载ChromeDriver,配置环境变量,我直接把.exe文件放在了jdk安装路径的bin文件夹下了(j…

FFmpeg编译安装(windows环境)以及在vs2022中调用

文章目录 下载源码环境准备下载msys换源下载依赖源码位置 开始编译编译x264编译ffmpeg 在VS2022写cpp调用ffmpeg 下载源码 直接在官网下载压缩包 这个应该是目前(2023/10/24)最新的一个版本。下载之后是这个样子: 我打算添加外部依赖x264&a…

说一说ajax的请求过程?

AJAX(Asynchronous JavaScript and XML)是一种通过在后台与服务器进行异步通信的技术,用于实现页面的局部更新和动态加载数据。下面是 AJAX 请求的一般过程: 1:创建 XMLHttpRequest 对象:在 JavaScript 中…

12、Python -- if 分支 的讲解和使用

目录 程序结构顺序结构分支结构分支结构注意点不要忘记冒号 if条件的类型if条件的逻辑错误if表达式pass语句 程序流程 分支结构 分支结构的注意点 if条件的类型 if语句的逻辑错误 if表达式 程序结构 Python同样提供了现代编程语言都支持的三种流程 顺序结构 分支结构 循环结构…

Unity DOTS系列之Filter Baking Output与Prefab In Baking核心分析

最近DOTS发布了正式的版本, 我们来分享一下DOTS里面Baking核心机制,方便大家上手学习掌握Unity DOTS开发。今天给大家分享的Baking机制中的Filter Baking Output与Prefab In Baking。 对啦!这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的零基础…

SQL Delete 语句(删除表中的记录)

SQL DELETE 语句 DELETE语句用于删除表中现有记录。 SQL DELETE 语法 DELETE FROM table_name WHERE condition; 请注意删除表格中的记录时要小心!注意SQL DELETE 语句中的 WHERE 子句! WHERE子句指定需要删除哪些记录。如果省略了WHERE子句&#xff…

【数据结构】数组和字符串(二):特殊矩阵的压缩存储:对角矩阵——一维数组

文章目录 4.2.1 矩阵的数组表示4.2.2 特殊矩阵的压缩存储a. 对角矩阵的压缩存储结构体初始化元素设置元素获取打印矩阵主函数输出结果代码整合 4.2.1 矩阵的数组表示 【数据结构】数组和字符串(一):矩阵的数组表示 4.2.2 特殊矩阵的压缩存储…

Elasticsearch配置文件

一 前言 在elasticsearch\config目录下,有三个核心的配置文件: elasticsearch.yml,es相关的配置。jvm.options,Java jvm相关参数的配置。log4j2.properties,日志相关的配置,因为es采用了log4j的日志框架。这里以elasticsearch6.5.4版本为例,并且由于版本不同,配置也不…

UG\NX二次开发 实现“适合窗口”的功能

文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,里海BlockUI专栏,C\C++-CSDN博客 感谢粉丝订阅 感谢 shsjdj 订阅本专栏,非常感谢。 简介 实现“适合窗口”的功能 效果 代码1 #include "me.hpp"extern DllExport void ufusr(char* param, int* re…

【数据结构与算法】二叉树的综合运用

目录 一,层序遍历算法 1-1,队列结构的设立 1-2,逻辑分析 二,判断单值二叉树 三,求二叉树的最大深度 一,层序遍历算法 二叉树的层序遍历是一层一层的从左到右遍历,现在问题是二叉树不支持随…

我们距离“裸眼3D自由”,还有多远?

还记得2018年,我曾熬夜好几天,就为了抢一张故宫博物院“清明上河图互动艺术展演”的门票。 后来,我也曾去过很多城市,看过不少策划精良的展览。那场“穿越北宋”的名画之旅,依然是我看过的,最具沉浸感的一场…

【Linux】kill 命令使用

经常用kill -9 XXX 。一直在kill,除了kill -9 -15 ,还能做什么?今天咱们一起学习一下。 kill 命令用于删除执行中的程序或工作。 kill命令 -Linux手册页 命令选项及作用 执行令 man kill 执行命令结果 参数 -l 信号,若果…

力扣学习笔记——49. 字母异位词分组

49. 字母异位词分组 https://leetcode.cn/problems/group-anagrams/?envTypestudy-plan-v2&envIdtop-100-liked 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。…

驱动开发5 阻塞IO实例、IO多路复用

1 阻塞IO 进程1 #include <stdlib.h> #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/ioctl.h> #include <fcntl.h> #include <unistd.h> #include <string.h>int main(int argc, char co…

Luckyexcel 加载 springboot 后台返回的 excel 文件并显示

&#x1f451; 博主简介&#xff1a;知名开发工程师 &#x1f463; 出没地点&#xff1a;北京 &#x1f48a; 2023年目标&#xff1a;成为一个大佬 ——————————————————————————————————————————— 版权声明&#xff1a;本文为原创文…